Update app.py
Browse files
app.py
CHANGED
@@ -1,412 +1,98 @@
|
|
1 |
-
import
|
2 |
-
import requests
|
3 |
-
|
4 |
-
from PIL import Image
|
5 |
-
import PIL
|
6 |
-
from PIL import ImageDraw
|
7 |
-
|
8 |
-
from matplotlib import pyplot as plt
|
9 |
-
import matplotlib
|
10 |
-
from matplotlib import rcParams
|
11 |
-
|
12 |
-
import os
|
13 |
-
import tempfile
|
14 |
-
from io import BytesIO
|
15 |
-
from pathlib import Path
|
16 |
-
import argparse
|
17 |
-
import random
|
18 |
-
import numpy as np
|
19 |
import torch
|
20 |
-
import
|
21 |
-
import pandas as pd
|
22 |
-
|
23 |
-
|
24 |
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
25 |
-
from
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
28 |
from SuperGluePretrainedNetwork.models.matching import Matching
|
29 |
-
from SuperGluePretrainedNetwork.models.utils import
|
30 |
-
estimate_pose,
|
31 |
-
error_colormap, AverageTimer, pose_auc, read_image,
|
32 |
-
rotate_intrinsics, rotate_pose_inplane,
|
33 |
-
scale_intrinsics)
|
34 |
-
|
35 |
-
torch.set_grad_enabled(False)
|
36 |
-
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
if torch.cuda.is_available():
|
47 |
-
device = torch.device("cuda")
|
48 |
-
else:
|
49 |
-
device = torch.device("cpu")
|
50 |
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
from PIL import Image, ImageDraw
|
54 |
-
from io import BytesIO
|
55 |
-
import matplotlib.pyplot as plt
|
56 |
-
import numpy as np
|
57 |
-
import torch
|
58 |
-
import cv2
|
59 |
-
import tempfile
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
mixin,
|
66 |
-
device,
|
67 |
-
threshold=0.5,
|
68 |
-
nms_threshold=0.3,
|
69 |
-
visualize=True):
|
70 |
-
|
71 |
-
# Open target image
|
72 |
-
image = Image.open(target_image_path).convert('RGB')
|
73 |
-
image_size = model.config.vision_config.image_size + 5
|
74 |
-
image = mixin.resize(image, image_size)
|
75 |
-
target_sizes = torch.Tensor([image.size[::-1]])
|
76 |
-
|
77 |
-
# Open query image
|
78 |
-
query_image = Image.open(query_image_path).convert('RGB')
|
79 |
-
image_size = model.config.vision_config.image_size + 5
|
80 |
-
query_image = mixin.resize(query_image, image_size)
|
81 |
-
|
82 |
-
# Process input and query image
|
83 |
-
inputs = processor(images=image, query_images=query_image, return_tensors="pt").to(device)
|
84 |
-
|
85 |
-
# Get predictions
|
86 |
with torch.no_grad():
|
87 |
outputs = model.image_guided_detection(**inputs)
|
88 |
-
|
89 |
-
|
90 |
-
img = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
|
91 |
outputs.logits = outputs.logits.cpu()
|
92 |
-
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu()
|
93 |
-
|
94 |
-
# Post process the predictions
|
95 |
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes)
|
96 |
boxes, scores = results[0]["boxes"], results[0]["scores"]
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
fig, ax = plt.subplots(figsize=(6, 6))
|
102 |
-
ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
103 |
-
ax.set_title("Original Image")
|
104 |
-
ax.axis("off")
|
105 |
-
plt.show()
|
106 |
-
return []
|
107 |
-
|
108 |
-
# Filter boxes
|
109 |
-
img_with_all_boxes = img.copy()
|
110 |
filtered_boxes = []
|
111 |
-
|
112 |
-
img_width, img_height = img.shape[1], img.shape[0]
|
113 |
-
for box, score in zip(boxes, scores):
|
114 |
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
|
115 |
-
if x1 < 0 or y1 < 0 or x2 < 0 or y2 < 0:
|
116 |
-
continue
|
117 |
-
if (x2 - x1) / img_width >= 0.94 and (y2 - y1) / img_height >= 0.94:
|
118 |
-
continue
|
119 |
-
filtered_boxes.append([x1, y1, x2, y2])
|
120 |
-
filtered_scores.append(score)
|
121 |
-
|
122 |
-
# Draw boxes on original image
|
123 |
-
draw = ImageDraw.Draw(image)
|
124 |
-
for box in filtered_boxes:
|
125 |
-
draw.rectangle(box, outline="red",width=3)
|
126 |
-
|
127 |
-
cropped_images = []
|
128 |
-
for box in filtered_boxes:
|
129 |
-
x1, y1, x2, y2 = box
|
130 |
cropped_img = img[y1:y2, x1:x2]
|
131 |
if cropped_img.size != 0:
|
132 |
-
|
133 |
-
|
134 |
-
if visualize:
|
135 |
-
# Visualization
|
136 |
-
if not filtered_boxes:
|
137 |
-
fig, ax = plt.subplots(figsize=(6, 6))
|
138 |
-
ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
139 |
-
ax.set_title("Original Image")
|
140 |
-
ax.axis("off")
|
141 |
-
plt.show()
|
142 |
-
else:
|
143 |
-
fig, axs = plt.subplots(1, len(cropped_images) + 2, figsize=(15, 5))
|
144 |
-
axs[0].imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
145 |
-
axs[0].set_title("Original Image")
|
146 |
-
axs[0].axis("off")
|
147 |
-
|
148 |
-
for i, (box, score) in enumerate(zip(filtered_boxes, filtered_scores)):
|
149 |
-
x1, y1, x2, y2 = box
|
150 |
-
cropped_img = img[y1:y2, x1:x2]
|
151 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
152 |
-
text = f"{score:.2f}"
|
153 |
-
cv2.putText(cropped_img, text, (5, cropped_img.shape[0]-10), font, 0.5, (255,0,0), 1, cv2.LINE_AA)
|
154 |
-
axs[i+2].imshow(cv2.cvtColor(cropped_img, cv2.COLOR_BGR2RGB))
|
155 |
-
axs[i+2].set_title("Score: " + text)
|
156 |
-
axs[i+2].axis("off")
|
157 |
-
plt.tight_layout()
|
158 |
-
plt.show()
|
159 |
-
|
160 |
-
return cropped_images, image # return original image with boxes drawn
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
# Create a temporary file for the image
|
167 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png', dir=tempfile.gettempdir())
|
168 |
-
temp_file_name = temp_file.name
|
169 |
-
temp_file.close() # We close it because we're not writing to it directly, PIL will handle the writing
|
170 |
-
|
171 |
-
# Save the image to the temp file
|
172 |
-
img.save(temp_file_name)
|
173 |
|
174 |
-
return
|
175 |
-
|
176 |
-
'''
|
177 |
-
def process_resize(w: int, h: int, resize_dims: list) -> tuple:
|
178 |
-
if len(resize_dims) == 1 and resize_dims[0] > -1:
|
179 |
-
scale = resize_dims[0] / max(h, w)
|
180 |
-
w_new, h_new = int(round(w * scale)), int(round(h * scale))
|
181 |
-
return w_new, h_new
|
182 |
-
return w, h
|
183 |
-
'''
|
184 |
-
|
185 |
-
def plot_image_pair(imgs, dpi=100, size=6, pad=.5):
|
186 |
-
n = len(imgs)
|
187 |
-
assert n == 2, 'number of images must be two'
|
188 |
-
figsize = (size*n, size*3/4) if size is not None else None
|
189 |
-
_, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
|
190 |
-
for i in range(n):
|
191 |
-
ax[i].imshow(imgs[i], cmap=plt.get_cmap('gray'), vmin=0, vmax=255)
|
192 |
-
ax[i].get_yaxis().set_ticks([])
|
193 |
-
ax[i].get_xaxis().set_ticks([])
|
194 |
-
for spine in ax[i].spines.values(): # remove frame
|
195 |
-
spine.set_visible(False)
|
196 |
-
plt.tight_layout(pad=pad)
|
197 |
-
|
198 |
-
def plot_keypoints(kpts0, kpts1, color='w', ps=2):
|
199 |
-
ax = plt.gcf().axes
|
200 |
-
ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
|
201 |
-
ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)
|
202 |
-
|
203 |
-
def plot_matches(kpts0, kpts1, color, lw=1.5, ps=4):
|
204 |
-
fig = plt.gcf()
|
205 |
-
ax = fig.axes
|
206 |
-
fig.canvas.draw()
|
207 |
-
|
208 |
-
transFigure = fig.transFigure.inverted()
|
209 |
-
fkpts0 = transFigure.transform(ax[0].transData.transform(kpts0))
|
210 |
-
fkpts1 = transFigure.transform(ax[1].transData.transform(kpts1))
|
211 |
-
|
212 |
-
fig.lines = [matplotlib.lines.Line2D(
|
213 |
-
(fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]), zorder=1,
|
214 |
-
transform=fig.transFigure, c=color[i], linewidth=lw)
|
215 |
-
for i in range(len(kpts0))]
|
216 |
-
ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
|
217 |
-
ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)
|
218 |
-
|
219 |
-
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1,
|
220 |
-
color, text, path=None, show_keypoints=False,
|
221 |
-
fast_viz=False, opencv_display=False,
|
222 |
-
opencv_title='matches', small_text=[]):
|
223 |
-
|
224 |
-
# Set the background color for the plot
|
225 |
-
plt.figure(facecolor='#eeeeee')
|
226 |
-
plot_image_pair([image0, image1])
|
227 |
-
|
228 |
-
# Elegant points and lines for matches
|
229 |
-
if show_keypoints:
|
230 |
-
plot_keypoints(kpts0, kpts1, color='k', ps=4)
|
231 |
-
plot_keypoints(kpts0, kpts1, color='w', ps=2)
|
232 |
-
plot_matches(mkpts0, mkpts1, color, lw=1)
|
233 |
-
|
234 |
-
fig = plt.gcf()
|
235 |
-
|
236 |
-
# Add text
|
237 |
-
fig.text(
|
238 |
-
0.01, 0.01, '\n'.join(small_text), transform=fig.axes[0].transAxes,
|
239 |
-
fontsize=10, va='bottom', ha='left', color='#333333', fontweight='bold',
|
240 |
-
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', boxstyle="round,pad=0.3"))
|
241 |
-
|
242 |
-
fig.text(
|
243 |
-
0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
|
244 |
-
fontsize=15, va='top', ha='left', color='#333333', fontweight='bold',
|
245 |
-
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', boxstyle="round,pad=0.3"))
|
246 |
-
|
247 |
-
# Optional: remove axis for a cleaner look
|
248 |
-
plt.axis('off')
|
249 |
-
|
250 |
-
# Convert the figure to an OpenCV image
|
251 |
-
buf = BytesIO()
|
252 |
-
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
253 |
-
buf.seek(0)
|
254 |
-
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
|
255 |
-
buf.close()
|
256 |
-
img = cv2.imdecode(img_arr, 1)
|
257 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
258 |
-
|
259 |
-
# Close the figure to free memory
|
260 |
-
plt.close(fig)
|
261 |
-
|
262 |
-
return img
|
263 |
-
|
264 |
-
def create_image_pyramid2(image_path, longest_side, scales=[0.25, 0.5, 1.0]):
|
265 |
-
original_image = cv2.imread(image_path)
|
266 |
-
oh, ow, _ = original_image.shape
|
267 |
-
|
268 |
-
# Determine the scaling factor based on the longest side
|
269 |
-
if oh > ow:
|
270 |
-
output_height = longest_side
|
271 |
-
output_width = int((ow / oh) * longest_side)
|
272 |
-
else:
|
273 |
-
output_width = longest_side
|
274 |
-
output_height = int((oh / ow) * longest_side)
|
275 |
-
output_size = (output_width, output_height)
|
276 |
-
|
277 |
-
pyramid = []
|
278 |
-
|
279 |
-
for scale in scales:
|
280 |
-
# Resize based on the scale factor
|
281 |
-
resized = cv2.resize(original_image, None, fx=scale, fy=scale)
|
282 |
-
rh, rw, _ = resized.shape
|
283 |
-
|
284 |
-
if scale < 1.0: # downsampling
|
285 |
-
# Calculate the amount of padding required
|
286 |
-
dy_top = max((output_size[1] - rh) // 2, 0)
|
287 |
-
dy_bottom = output_size[1] - rh - dy_top
|
288 |
-
dx_left = max((output_size[0] - rw) // 2, 0)
|
289 |
-
dx_right = output_size[0] - rw - dx_left
|
290 |
-
|
291 |
-
# Create padded image
|
292 |
-
padded = cv2.copyMakeBorder(resized, dy_top, dy_bottom, dx_left, dx_right, cv2.BORDER_CONSTANT, value=[255, 255, 255])
|
293 |
-
pyramid.append(padded)
|
294 |
-
elif scale > 1.0: # upsampling
|
295 |
-
# We need to crop the image to fit the desired output size
|
296 |
-
dy = (rh - output_size[1]) // 2
|
297 |
-
dx = (rw - output_size[0]) // 2
|
298 |
-
cropped = resized[dy:dy+output_size[1], dx:dx+output_size[0]]
|
299 |
-
pyramid.append(cropped)
|
300 |
-
else: # scale == 1.0
|
301 |
-
pyramid.append(resized)
|
302 |
-
|
303 |
-
return pyramid
|
304 |
-
|
305 |
-
# Example usage
|
306 |
-
# pyramid = create_image_pyramid('path_to_image.jpg', 800)
|
307 |
-
def image_matching(query_img, target_img, image_dims=[640*2], scale_factors=[0.33,0.66,1], visualize=True, k_thresh=None, m_thresh=None, write=False):
|
308 |
|
309 |
-
|
310 |
-
query_pyramid = create_image_pyramid2(query_img, image_dims[0], scale_factors)
|
311 |
-
|
312 |
-
all_valid = []
|
313 |
-
all_inliers = []
|
314 |
-
all_return_imgs = []
|
315 |
-
max_matches_img = None
|
316 |
-
max_matches = -1
|
317 |
-
|
318 |
-
for idx, query_level in enumerate(query_pyramid):
|
319 |
-
temp_file_path = "temp_level_{}.png".format(idx)
|
320 |
-
cv2.imwrite(temp_file_path, query_level)
|
321 |
-
|
322 |
-
image0, inp0, scales0 = read_image(temp_file_path, device, [640*2], 0, True)
|
323 |
-
|
324 |
-
if image0 is None or image1 is None:
|
325 |
-
print('Problem reading image pair: {} {}'.format(query_img, target_img))
|
326 |
-
else:
|
327 |
-
# Matching
|
328 |
-
pred = matching({'image0': inp0, 'image1': inp1})
|
329 |
-
pred = {k: v[0] for k, v in pred.items()}
|
330 |
-
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
|
331 |
-
matches, conf = pred['matches0'], pred['matching_scores0']
|
332 |
-
|
333 |
-
valid = matches > -1
|
334 |
-
mkpts0 = kpts0[valid]
|
335 |
-
mkpts1 = kpts1[matches[valid]]
|
336 |
-
mconf = conf[valid]
|
337 |
-
#color = cm.jet(mconf)[:len(mkpts0)] # Ensure consistent size
|
338 |
-
color = cm.jet(mconf.detach().numpy())[:len(mkpts0)]
|
339 |
-
|
340 |
-
all_valid.append(np.sum( valid.tolist() ))
|
341 |
-
|
342 |
-
# Convert torch tensors to numpy arrays.
|
343 |
-
mkpts0_np = mkpts0.cpu().numpy()
|
344 |
-
mkpts1_np = mkpts1.cpu().numpy()
|
345 |
-
|
346 |
-
try:
|
347 |
-
# Use RANSAC to find the homography matrix.
|
348 |
-
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
|
349 |
-
except:
|
350 |
-
H = 0
|
351 |
-
inliers = 0
|
352 |
-
print ("Not enough points for homography")
|
353 |
-
# Convert inliers from shape (N, 1) to shape (N,) and count them.
|
354 |
-
num_inliers = np.sum(inliers)
|
355 |
-
|
356 |
-
all_inliers.append(num_inliers)
|
357 |
-
|
358 |
-
# Visualization
|
359 |
-
text = [
|
360 |
-
'Engagify Image Matching',
|
361 |
-
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
|
362 |
-
'Scaling Factor: {}'.format( scale_factors[idx]),
|
363 |
-
'Matches: {}'.format(len(mkpts0)),
|
364 |
-
'Inliers: {}'.format(num_inliers),
|
365 |
-
]
|
366 |
-
|
367 |
-
|
368 |
-
k_thresh = matching.superpoint.config['keypoint_threshold']
|
369 |
-
m_thresh = matching.superglue.config['match_threshold']
|
370 |
-
|
371 |
-
small_text = [
|
372 |
-
'Keypoint Threshold: {:.4f}'.format(k_thresh),
|
373 |
-
'Match Threshold: {:.2f}'.format(m_thresh),
|
374 |
-
]
|
375 |
-
|
376 |
-
visualized_img = None # To store the visualized image
|
377 |
-
|
378 |
-
if visualize:
|
379 |
-
ret_img = unified_matching_plot2(
|
380 |
-
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, 'Test_Level_{}'.format(idx), True, False, True, 'Matches_Level_{}'.format(idx), small_text)
|
381 |
-
all_return_imgs.append(ret_img)
|
382 |
-
# Storing image with most matches
|
383 |
-
#if len(mkpts0) > max_matches:
|
384 |
-
# max_matches = len(mkpts0)
|
385 |
-
# max_matches_img = 'Matches_Level_{}'.format(idx)
|
386 |
-
|
387 |
-
avg_valid = np.sum(all_valid) / len(scale_factors)
|
388 |
-
avg_inliers = np.sum(all_inliers) / len(scale_factors)
|
389 |
-
|
390 |
-
# Convert the image with the most matches to base64 encoded format
|
391 |
-
# with open(max_matches_img, "rb") as image_file:
|
392 |
-
# encoded_string = base64.b64encode(image_file.read()).decode()
|
393 |
-
|
394 |
-
return {'valid':all_valid, 'inliers':all_inliers, 'visualized_image':all_return_imgs} #, encoded_string
|
395 |
-
|
396 |
-
# Usage:
|
397 |
-
#results = image_matching('Samples/Poster/poster_event_small_22.jpg', 'Samples/Images/16.jpeg', visualize=True)
|
398 |
-
#print (results)
|
399 |
-
|
400 |
-
def image_matching_no_pyramid(query_img, target_img, visualize=True, write=False):
|
401 |
-
|
402 |
image1, inp1, scales1 = read_image(target_img, device, [640*2], 0, True)
|
403 |
image0, inp0, scales0 = read_image(query_img, device, [640*2], 0, True)
|
404 |
-
|
405 |
if image0 is None or image1 is None:
|
406 |
-
print('Problem reading image pair: {} {}'.format(query_img, target_img))
|
407 |
return None
|
408 |
-
|
409 |
-
# Matching
|
410 |
pred = matching({'image0': inp0, 'image1': inp1})
|
411 |
pred = {k: v[0] for k, v in pred.items()}
|
412 |
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
|
@@ -416,194 +102,88 @@ def image_matching_no_pyramid(query_img, target_img, visualize=True, write=False
|
|
416 |
mkpts0 = kpts0[valid]
|
417 |
mkpts1 = kpts1[matches[valid]]
|
418 |
mconf = conf[valid]
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
valid_count = np.sum(valid.tolist())
|
423 |
|
424 |
-
# Convert torch tensors to numpy arrays.
|
425 |
mkpts0_np = mkpts0.cpu().numpy()
|
426 |
mkpts1_np = mkpts1.cpu().numpy()
|
427 |
|
428 |
-
try:
|
429 |
-
# Use RANSAC to find the homography matrix.
|
430 |
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
|
431 |
except:
|
432 |
-
H = 0
|
433 |
inliers = 0
|
434 |
-
print("Not enough points for homography")
|
435 |
-
|
436 |
-
# Convert inliers from shape (N, 1) to shape (N,) and count them.
|
437 |
-
num_inliers = np.sum(inliers)
|
438 |
-
|
439 |
-
# Visualization
|
440 |
-
text = [
|
441 |
-
'Engagify Image Matching',
|
442 |
-
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
|
443 |
-
'Matches: {}'.format(len(mkpts0)),
|
444 |
-
'Inliers: {}'.format(num_inliers),
|
445 |
-
]
|
446 |
|
447 |
-
|
448 |
-
m_thresh = matching.superglue.config['match_threshold']
|
449 |
-
|
450 |
-
small_text = [
|
451 |
-
'Keypoint Threshold: {:.4f}'.format(k_thresh),
|
452 |
-
'Match Threshold: {:.2f}'.format(m_thresh),
|
453 |
-
]
|
454 |
|
455 |
-
visualized_img = None # To store the visualized image
|
456 |
-
|
457 |
if visualize:
|
458 |
visualized_img = unified_matching_plot2(
|
459 |
-
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color,
|
460 |
-
|
|
|
|
|
461 |
return {
|
462 |
-
'valid': [valid_count],
|
463 |
'inliers': [num_inliers],
|
464 |
'visualized_image': [visualized_img]
|
465 |
}
|
466 |
|
467 |
-
|
468 |
-
#results = image_matching_no_pyramid('Samples/Poster/poster_event_small_22.jpg', 'Samples/Images/16.jpeg', visualize=True)
|
469 |
-
|
470 |
-
# Load the SuperPoint and SuperGlue models.
|
471 |
-
device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu'
|
472 |
-
print('Running inference on device \"{}\"'.format(device))
|
473 |
-
config = {
|
474 |
-
'superpoint': {
|
475 |
-
'nms_radius': 4,
|
476 |
-
'keypoint_threshold': 0.005,
|
477 |
-
'max_keypoints': 1024
|
478 |
-
},
|
479 |
-
'superglue': {
|
480 |
-
'weights': 'outdoor',
|
481 |
-
'sinkhorn_iterations': 20,
|
482 |
-
'match_threshold': 0.2,
|
483 |
-
}
|
484 |
-
}
|
485 |
-
matching = Matching(config).eval().to(device)
|
486 |
-
|
487 |
-
from PIL import Image
|
488 |
-
|
489 |
-
def stitch_images(images):
|
490 |
-
"""Stitches a list of images vertically."""
|
491 |
-
if not images:
|
492 |
-
# Return a placeholder image if the images list is empty
|
493 |
-
return Image.new('RGB', (100, 100), color='gray')
|
494 |
-
|
495 |
-
max_width = max([img.width for img in images])
|
496 |
-
total_height = sum(img.height for img in images)
|
497 |
-
|
498 |
-
composite = Image.new('RGB', (max_width, total_height))
|
499 |
-
|
500 |
-
y_offset = 0
|
501 |
-
for img in images:
|
502 |
-
composite.paste(img, (0, y_offset))
|
503 |
-
y_offset += img.height
|
504 |
-
|
505 |
-
return composite
|
506 |
-
|
507 |
-
def check_object_in_image3(query_image, target_image, threshold=50, scale_factor=[0.33,0.66,1]):
|
508 |
-
decision_on = []
|
509 |
-
# Convert cv2 images to PIL images and add them to a list
|
510 |
images_to_return = []
|
|
|
511 |
|
512 |
-
cropped_images, bbox_image = detect_and_crop2(target_image_path=target_image,
|
513 |
-
query_image_path=query_image,
|
514 |
-
model=model,
|
515 |
-
processor=processor,
|
516 |
-
mixin=mixin,
|
517 |
-
device=device,
|
518 |
-
visualize=False)
|
519 |
-
|
520 |
temp_files = [save_array_to_temp_image(i) for i in cropped_images]
|
521 |
crop_results = [image_matching_no_pyramid(query_image, i, visualize=True) for i in temp_files]
|
522 |
|
523 |
cropped_visuals = []
|
524 |
cropped_inliers = []
|
525 |
for result in crop_results:
|
526 |
-
# Add visualized images to the temporary list
|
527 |
for img in result['visualized_image']:
|
528 |
cropped_visuals.append(Image.fromarray(img))
|
529 |
for inliers_ in result['inliers']:
|
530 |
cropped_inliers.append(inliers_)
|
531 |
-
|
532 |
images_to_return.append(stitch_images(cropped_visuals))
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
pyramid_visuals = [Image.fromarray(img) for img in pyramid_results['visualized_image']]
|
537 |
-
# Stitch the pyramid visuals into one image
|
538 |
-
images_to_return.append(stitch_images(pyramid_visuals))
|
539 |
-
|
540 |
-
# Check inliers and determine if the object is present
|
541 |
-
print (cropped_inliers)
|
542 |
-
is_present = any(value > threshold for value in cropped_inliers)
|
543 |
-
if is_present == True:
|
544 |
-
decision_on.append('Object Detection')
|
545 |
-
is_present = any(value > threshold for value in pyramid_results["inliers"])
|
546 |
-
if is_present == True:
|
547 |
-
decision_on.append('Pyramid Max Point')
|
548 |
-
if is_present == False:
|
549 |
-
decision_on.append("Neither, It Failed All Tests")
|
550 |
-
|
551 |
-
# Return results as a dictionary
|
552 |
return {
|
553 |
'is_present': is_present,
|
554 |
-
'images': images_to_return,
|
555 |
-
'
|
556 |
-
'
|
557 |
-
'pyramid_inliers' : pyramid_results["inliers"],
|
558 |
-
'bbox_image':bbox_image,
|
559 |
-
'decision_on':decision_on,
|
560 |
-
|
561 |
}
|
562 |
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
#print(result['images']) # is a list of 2 stitched images.
|
568 |
|
|
|
|
|
569 |
|
570 |
-
|
571 |
-
|
572 |
-
from PIL import Image
|
573 |
-
|
574 |
-
def gradio_interface(query_image_path, target_image_path, threshold):
|
575 |
-
result = check_object_in_image3(query_image_path, target_image_path, threshold)
|
576 |
-
# Depending on how many images are in the list, you can return them like this:
|
577 |
-
return result['bbox_image'], result['images'][0], result['object detection inliers'], result['scale factors'], result['pyramid_inliers'], result['images'][1], str(result['is_present']), result['decision_on']
|
578 |
-
|
579 |
-
|
580 |
-
# Define the Gradio interface
|
581 |
-
interface = gr.Interface(
|
582 |
-
fn=gradio_interface, # function to be called on button press
|
583 |
inputs=[
|
584 |
-
gr.
|
585 |
-
gr.
|
586 |
-
gr.
|
587 |
-
|
|
|
588 |
outputs=[
|
589 |
-
gr.
|
590 |
-
gr.components.Image(label="Cropped Visuals from Image Guided Object Detection "),
|
591 |
-
gr.components.Text(label='Inliers detected for Image Guided Object Detection '),
|
592 |
-
gr.components.Text(label='Scale Factors Used for Pyramid (Results below, In Order)'),
|
593 |
-
gr.components.Text(label='Inliers detected for Pyramid Search (In Order)'),
|
594 |
-
gr.components.Image(label="Pyramid Visuals"),
|
595 |
-
gr.components.Textbox(label="Object Present?"),
|
596 |
-
gr.components.Textbox(label="Decision Taken Based on?"),
|
597 |
],
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
|
|
607 |
)
|
608 |
|
609 |
-
|
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
import numpy as np
|
|
|
|
|
|
|
4 |
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
import cv2
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import tempfile
|
10 |
+
import os
|
11 |
from SuperGluePretrainedNetwork.models.matching import Matching
|
12 |
+
from SuperGluePretrainedNetwork.models.utils import read_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Load models
|
15 |
+
mixin = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
|
16 |
+
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
|
17 |
+
model = mixin.to(device)
|
18 |
+
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
matching = Matching({
|
21 |
+
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024},
|
22 |
+
'superglue': {'weights': 'outdoor', 'sinkhorn_iterations': 20, 'match_threshold': 0.2}
|
23 |
+
}).eval().to(device)
|
24 |
+
|
25 |
+
# Utility functions
|
26 |
+
def preprocess_image(image):
|
27 |
+
transform = transforms.Compose([
|
28 |
+
transforms.Resize((224, 224)),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
31 |
+
])
|
32 |
+
return transform(image).unsqueeze(0)
|
33 |
|
34 |
+
def save_array_to_temp_image(arr):
|
35 |
+
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
|
36 |
+
img = Image.fromarray(rgb_arr)
|
37 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
38 |
+
temp_file_name = temp_file.name
|
39 |
+
temp_file.close()
|
40 |
+
img.save(temp_file_name)
|
41 |
+
return temp_file_name
|
42 |
|
43 |
+
def stitch_images(images):
|
44 |
+
if not images:
|
45 |
+
return Image.new('RGB', (100, 100), color='gray')
|
46 |
|
47 |
+
max_width = max([img.width for img in images])
|
48 |
+
total_height = sum(img.height for img in images)
|
49 |
|
50 |
+
composite = Image.new('RGB', (max_width, total_height))
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
y_offset = 0
|
53 |
+
for img in images:
|
54 |
+
composite.paste(img, (0, y_offset))
|
55 |
+
y_offset += img.height
|
56 |
|
57 |
+
return composite
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# Main functions
|
60 |
+
def detect_and_crop(target_image, query_image, threshold=0.5, nms_threshold=0.3):
|
61 |
+
target_sizes = torch.Tensor([target_image.size[::-1]])
|
62 |
+
inputs = processor(images=target_image, query_images=query_image, return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
with torch.no_grad():
|
64 |
outputs = model.image_guided_detection(**inputs)
|
65 |
+
|
66 |
+
img = cv2.cvtColor(np.array(target_image), cv2.COLOR_BGR2RGB)
|
|
|
67 |
outputs.logits = outputs.logits.cpu()
|
68 |
+
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu()
|
69 |
+
|
|
|
70 |
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes)
|
71 |
boxes, scores = results[0]["boxes"], results[0]["scores"]
|
72 |
|
73 |
+
if len(boxes) == 0:
|
74 |
+
return [], None
|
75 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
filtered_boxes = []
|
77 |
+
for box in boxes:
|
|
|
|
|
78 |
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
cropped_img = img[y1:y2, x1:x2]
|
80 |
if cropped_img.size != 0:
|
81 |
+
filtered_boxes.append(cropped_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
draw = ImageDraw.Draw(target_image)
|
84 |
+
for box in boxes:
|
85 |
+
draw.rectangle(box.tolist(), outline="red", width=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
return filtered_boxes, target_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
def image_matching_no_pyramid(query_img, target_img, visualize=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
image1, inp1, scales1 = read_image(target_img, device, [640*2], 0, True)
|
91 |
image0, inp0, scales0 = read_image(query_img, device, [640*2], 0, True)
|
92 |
+
|
93 |
if image0 is None or image1 is None:
|
|
|
94 |
return None
|
95 |
+
|
|
|
96 |
pred = matching({'image0': inp0, 'image1': inp1})
|
97 |
pred = {k: v[0] for k, v in pred.items()}
|
98 |
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
|
|
|
102 |
mkpts0 = kpts0[valid]
|
103 |
mkpts1 = kpts1[matches[valid]]
|
104 |
mconf = conf[valid]
|
105 |
+
color = cm.jet(mconf.cpu())[:len(mkpts0)]
|
106 |
+
|
|
|
107 |
valid_count = np.sum(valid.tolist())
|
108 |
|
|
|
109 |
mkpts0_np = mkpts0.cpu().numpy()
|
110 |
mkpts1_np = mkpts1.cpu().numpy()
|
111 |
|
112 |
+
try:
|
|
|
113 |
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
|
114 |
except:
|
|
|
115 |
inliers = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
num_inliers = np.sum(inliers)
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
|
|
|
|
119 |
if visualize:
|
120 |
visualized_img = unified_matching_plot2(
|
121 |
+
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, ['Matches'], True, False, True, 'Matches', [])
|
122 |
+
else:
|
123 |
+
visualized_img = None
|
124 |
+
|
125 |
return {
|
126 |
+
'valid': [valid_count],
|
127 |
'inliers': [num_inliers],
|
128 |
'visualized_image': [visualized_img]
|
129 |
}
|
130 |
|
131 |
+
def check_object_in_image(query_image, target_image, threshold=50, scale_factor=[0.33, 0.66, 1]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
images_to_return = []
|
133 |
+
cropped_images, bbox_image = detect_and_crop(target_image, query_image)
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
temp_files = [save_array_to_temp_image(i) for i in cropped_images]
|
136 |
crop_results = [image_matching_no_pyramid(query_image, i, visualize=True) for i in temp_files]
|
137 |
|
138 |
cropped_visuals = []
|
139 |
cropped_inliers = []
|
140 |
for result in crop_results:
|
|
|
141 |
for img in result['visualized_image']:
|
142 |
cropped_visuals.append(Image.fromarray(img))
|
143 |
for inliers_ in result['inliers']:
|
144 |
cropped_inliers.append(inliers_)
|
145 |
+
|
146 |
images_to_return.append(stitch_images(cropped_visuals))
|
147 |
+
|
148 |
+
is_present = any(value >= threshold for value in cropped_inliers)
|
149 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
return {
|
151 |
'is_present': is_present,
|
152 |
+
'images': images_to_return,
|
153 |
+
'object detection inliers': [int(i) for i in cropped_inliers],
|
154 |
+
'bbox_image': bbox_image,
|
|
|
|
|
|
|
|
|
155 |
}
|
156 |
|
157 |
+
def interface(poster_source, media_source, threshold, scale_factor):
|
158 |
+
result1 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
|
159 |
+
if result1['is_present']:
|
160 |
+
return result1
|
|
|
161 |
|
162 |
+
result2 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
|
163 |
+
return result2 if result2['is_present'] else result1
|
164 |
|
165 |
+
iface = gr.Interface(
|
166 |
+
fn=interface,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
inputs=[
|
168 |
+
gr.Image(type="pil", label="Upload a Query Image (Poster)"),
|
169 |
+
gr.Image(type="pil", label="Upload a Target Image (Media)"),
|
170 |
+
gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Threshold"),
|
171 |
+
gr.CheckboxGroup(choices=[0.33, 0.66, 1.0], value=[0.33, 0.66, 1.0], label="Scale Factors")
|
172 |
+
],
|
173 |
outputs=[
|
174 |
+
gr.JSON(label="Result")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
],
|
176 |
+
title="Object Detection in Image",
|
177 |
+
description="""
|
178 |
+
**Instructions:**
|
179 |
+
|
180 |
+
1. **Upload a Query Image (Poster)**: Select an image file that contains the object you want to detect.
|
181 |
+
2. **Upload a Target Image (Media)**: Select an image file where you want to detect the object.
|
182 |
+
3. **Set Threshold**: Adjust the slider to set the threshold for object detection.
|
183 |
+
4. **Set Scale Factors**: Select the scale factors for image pyramid.
|
184 |
+
5. **View Results**: The result will show whether the object is present in the image along with additional details.
|
185 |
+
"""
|
186 |
)
|
187 |
|
188 |
+
if __name__ == "__main__":
|
189 |
+
iface.launch()
|