Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from transformers import pipeline
|
4 |
+
import speech_recognition as sr
|
5 |
+
import gradio as gr
|
6 |
+
import cv2
|
7 |
+
from PIL import Image
|
8 |
+
import moviepy.editor as mp
|
9 |
+
from gtts import gTTS
|
10 |
+
from groq import Groq
|
11 |
+
|
12 |
+
|
13 |
+
client = Groq(
|
14 |
+
api_key="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",
|
15 |
+
)
|
16 |
+
|
17 |
+
# Initialize pipelines
|
18 |
+
image_pipeline = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=1)
|
19 |
+
audio_pipeline = pipeline("audio-classification", model="audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim")
|
20 |
+
text_pipeline = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions", top_k=2)
|
21 |
+
|
22 |
+
conversation_history = []
|
23 |
+
|
24 |
+
def process_input(video_stream):
|
25 |
+
if isinstance(video_stream, str):
|
26 |
+
video_file_path = video_stream
|
27 |
+
|
28 |
+
# Process video frames
|
29 |
+
image_features_list = []
|
30 |
+
audio_emotion = ""
|
31 |
+
text_input = ""
|
32 |
+
text_emotions = ""
|
33 |
+
|
34 |
+
cap = cv2.VideoCapture(video_file_path)
|
35 |
+
frame_count = 0
|
36 |
+
|
37 |
+
while True:
|
38 |
+
ret, frame = cap.read()
|
39 |
+
if not ret:
|
40 |
+
break
|
41 |
+
|
42 |
+
# Convert frame to PIL image
|
43 |
+
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
44 |
+
|
45 |
+
# Analyze the image
|
46 |
+
try:
|
47 |
+
image_analysis = image_pipeline(pil_image)
|
48 |
+
if image_analysis:
|
49 |
+
image_features_list.append(image_analysis[0]['label'])
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error processing image data: {e}")
|
52 |
+
|
53 |
+
# Increment frame count
|
54 |
+
frame_count += 1
|
55 |
+
|
56 |
+
# Combine image features into a single string
|
57 |
+
image_features = ', '.join(image_features_list)
|
58 |
+
print("Image features:", image_features)
|
59 |
+
|
60 |
+
# Process audio data and get the emotion label
|
61 |
+
try:
|
62 |
+
# Extract audio from the video file
|
63 |
+
video_clip = mp.VideoFileClip(video_file_path)
|
64 |
+
audio_file_path = os.path.join("/tmp", "audio.wav")
|
65 |
+
video_clip.audio.write_audiofile(audio_file_path)
|
66 |
+
|
67 |
+
recognizer = sr.Recognizer()
|
68 |
+
with sr.AudioFile(audio_file_path) as source:
|
69 |
+
audio = recognizer.record(source)
|
70 |
+
|
71 |
+
# Convert audio data to numpy array
|
72 |
+
audio_data = np.frombuffer(audio.frame_data, dtype=np.int16)
|
73 |
+
audio_data = audio_data.astype(np.float32) # Convert to float32
|
74 |
+
|
75 |
+
audio_emotions = audio_pipeline(audio_data)
|
76 |
+
if audio_emotions:
|
77 |
+
audio_emotion = audio_emotions[0]['label']
|
78 |
+
print("Audio emotion:", audio_emotion)
|
79 |
+
|
80 |
+
# Recognize audio
|
81 |
+
text_input = recognizer.recognize_google(audio)
|
82 |
+
print("User said:", text_input)
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error processing audio data: {e}")
|
85 |
+
|
86 |
+
# Process text data and get the emotion label
|
87 |
+
text_emotions = ""
|
88 |
+
try:
|
89 |
+
# Initialize text_input in case it's not set
|
90 |
+
if not text_input:
|
91 |
+
text_input = ""
|
92 |
+
|
93 |
+
text_analysis = text_pipeline(text_input)
|
94 |
+
print("text analysis:", text_analysis)
|
95 |
+
|
96 |
+
if isinstance(text_analysis, list):
|
97 |
+
# Flatten the list of lists
|
98 |
+
text_analysis = [item for sublist in text_analysis for item in sublist]
|
99 |
+
|
100 |
+
# Initialize an empty list to store the text emotions
|
101 |
+
text_emotions_list = []
|
102 |
+
|
103 |
+
# Iterate through each item in the flattened list
|
104 |
+
for item in text_analysis:
|
105 |
+
# Ensure each item is a dictionary and contains the 'label' key
|
106 |
+
if isinstance(item, dict) and 'label' in item:
|
107 |
+
# Append the 'label' value to the text_emotions_list
|
108 |
+
text_emotions_list.append(item['label'])
|
109 |
+
|
110 |
+
# Check if text_emotions_list is empty
|
111 |
+
if text_emotions_list:
|
112 |
+
# Convert the text_emotions_list to a comma-separated string
|
113 |
+
text_emotions = ', '.join(text_emotions_list)
|
114 |
+
print("Text emotions:", text_emotions)
|
115 |
+
else:
|
116 |
+
text_emotions = "No significant emotions detected in the text."
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Error processing text data: {e}")
|
120 |
+
|
121 |
+
print("Text emotions:", text_emotions)
|
122 |
+
|
123 |
+
conversation_history.append({
|
124 |
+
"user_input": text_input,
|
125 |
+
"image_features": image_features,
|
126 |
+
"audio_emotion": audio_emotion,
|
127 |
+
"text_emotions": text_emotions
|
128 |
+
})
|
129 |
+
|
130 |
+
prompt = "User said: " + text_input
|
131 |
+
if image_features:
|
132 |
+
prompt += "\nImage features: " + ', '.join(image_features)
|
133 |
+
if audio_emotion:
|
134 |
+
prompt += "\nAudio emotion: " + audio_emotion
|
135 |
+
if text_emotions:
|
136 |
+
prompt += "\nText emotions: " + text_emotions
|
137 |
+
|
138 |
+
print("image_feature",image_features)
|
139 |
+
print("Audio",audio_emotion)
|
140 |
+
print("text emotions",text_emotions)
|
141 |
+
|
142 |
+
chat_completion = client.chat.completions.create(
|
143 |
+
messages=[
|
144 |
+
{"role": "system",
|
145 |
+
"content": "As a mental health therapist, you're speaking to a user who is seeking guidance and support. They may be experiencing various challenges and are looking for solutions to improve their mental well-being. Your responses should be empathetic, supportive, and offer practical advice tailored to the user's specific issues. Remember to maintain a positive and non-judgmental tone throughout the interaction."
|
146 |
+
},
|
147 |
+
{"role": "user",
|
148 |
+
"content": prompt
|
149 |
+
}
|
150 |
+
],
|
151 |
+
model="llama3-70b-8192",
|
152 |
+
temperature=0.5,
|
153 |
+
max_tokens=1024,
|
154 |
+
top_p=1,
|
155 |
+
stop=None,
|
156 |
+
stream=False,
|
157 |
+
)
|
158 |
+
|
159 |
+
ai_response = chat_completion.choices[0].message.content
|
160 |
+
conversation_history.append({"ai_response": ai_response})
|
161 |
+
print(ai_response)
|
162 |
+
|
163 |
+
# Convert AI response to audio
|
164 |
+
tts = gTTS(text=ai_response, lang='en')
|
165 |
+
audio_file_path = "/tmp/ai_response.wav"
|
166 |
+
tts.save(audio_file_path)
|
167 |
+
|
168 |
+
return ai_response,audio_file_path,display_history() # Return the generated response
|
169 |
+
|
170 |
+
def display_history():
|
171 |
+
history_str = ""
|
172 |
+
for i, turn in enumerate(conversation_history):
|
173 |
+
# if "user_input" in turn:
|
174 |
+
# history_str += f"User: {turn['user_input']}\n"
|
175 |
+
if "ai_response" in turn:
|
176 |
+
history_str += f"{turn['ai_response']}\n\n"
|
177 |
+
return history_str
|
178 |
+
|
179 |
+
# Create the Gradio interface
|
180 |
+
input_video = gr.Video(sources="webcam",label="Your Video", include_audio=True)
|
181 |
+
output_text = gr.Textbox(label="Therapist Response")
|
182 |
+
output_audio=gr.Audio(autoplay=True,visible=False)
|
183 |
+
history_text = gr.Textbox(display_history(), label="Conversation History", placeholder="")
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
iface = gr.Interface(fn=process_input, inputs=input_video, outputs=[output_text,output_audio,history_text], title="Mental Health Therapist", description="Speak to the AI through video input and get responses.",theme=gr.themes.Default(primary_hue="teal", secondary_hue="cyan"),allow_flagging="auto")
|
188 |
+
iface.launch(debug=True)
|
189 |
+
|
190 |
+
|