import json import io import random import gradio as gr from PIL import Image from generate import * import numpy as np from typing import Dict, Any from processImage import process_and_encode_image def rgba_to_hex(rgba): r, g, b, _ = [int(float(x)) for x in rgba[5:-1].split(',')] return f"#{r:02X}{g:02X}{b:02X}" def add_color_to_list(current_colors, new_color): new_color_hex = rgba_to_hex(new_color) color_list = current_colors.split(',') if new_color_hex not in color_list and len(color_list) < 10: color_list.append(new_color_hex) return ','.join(filter(None, color_list)) def create_padded_image(image, padding_percent=100): image = image['background'] if image.mode != 'RGBA': image = image.convert('RGBA') width, height = image.size new_width = int(width * (1 + padding_percent/100)) new_height = int(height * (1 + padding_percent/100)) padded = Image.new('RGBA', (new_width, new_height), (0, 0, 0, 0)) x_offset = (new_width - width) // 2 y_offset = (new_height - height) // 2 padded.paste(image, (x_offset, y_offset)) return padded def process_composite_to_mask(original_image, composite_image, transparent=False): original_array = np.array(original_image.convert('RGBA')) if transparent: black_background = Image.new('RGBA', original_image.size, (0, 0, 0, 255)) black_background.paste(original_image, (0, 0), original_image) return black_background if composite_image is None: mask = np.full(original_array.shape[:2], 0, dtype=np.uint8) transparent_areas = original_array[:, :, 3] == 0 mask[transparent_areas] = 255 else: composite_array = np.array(composite_image.convert('RGBA')) difference = np.any(original_array != composite_array, axis=2) mask = np.full(original_array.shape[:2], 255, dtype=np.uint8) mask[difference] = 0 return Image.fromarray(mask, mode='L') def build_request(task_type, params, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0): param_dict = { "TEXT_IMAGE": "textToImageParams", "INPAINTING": "inPaintingParams", "OUTPAINTING": "outPaintingParams", "IMAGE_VARIATION": "imageVariationParams", "COLOR_GUIDED_GENERATION": "colorGuidedGenerationParams", "BACKGROUND_REMOVAL": "backgroundRemovalParams" } return json.dumps({ "taskType": task_type, param_dict[task_type]: params, "imageGenerationConfig": { "numberOfImages": 1, "height": height, "width": width, "quality": quality, "cfgScale": cfg_scale, "seed": seed } }) def check_return(result): if not isinstance(result, bytes): return None, gr.update(visible=True, value=result) return Image.open(io.BytesIO(result)), gr.update(value=None,visible=False) def text_to_image(prompt, negative_text=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0): text_to_image_params = {"text": prompt, **({"negativeText": negative_text} if negative_text not in [None, ""] else {}) } body = build_request("TEXT_IMAGE", text_to_image_params, height, width, quality, cfg_scale, seed) result = generate_image(body) return check_return(result) def inpainting(mask_image, mask_prompt=None, text=None, negative_text=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0): image = process_and_encode_image(mask_image['background']) if len(image) < 200: return None, gr.update(visible=True, value=image) if mask_prompt and mask_image: raise ValueError("You must specify either maskPrompt or maskImage, but not both.") if not mask_prompt and not mask_image: raise ValueError("You must specify either maskPrompt or maskImage.") if mask_image and 'composite' in mask_image: mask = process_composite_to_mask(mask_image['background'], mask_image['composite']) mask_image = process_and_encode_image(mask) in_painting_params = { "image": image, **({"maskImage": mask_image} if mask_image not in [None, ""] else {}), **({"maskPrompt": mask_prompt} if mask_prompt not in [None, ""] else {}), **({"text": text} if text not in [None, ""] else {}), **({"negativeText": negative_text} if negative_text not in [None, ""] else {}) } body = build_request("INPAINTING", in_painting_params, height, width, quality, cfg_scale, seed) result = generate_image(body) return check_return(result) def outpainting(mask_image, mask_prompt=None, text=None, negative_text=None, outpainting_mode="DEFAULT", height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0): image = process_and_encode_image(mask_image['background']) if len(image) < 200: print(image) return None, gr.update(visible=True, value=image) if mask_prompt and mask_image: raise ValueError("You must specify either maskPrompt or maskImage, but not both.") if not mask_prompt and not mask_image: raise ValueError("You must specify either maskPrompt or maskImage.") if mask_image and 'composite' in mask_image: mask = process_composite_to_mask(mask_image['background'], None) image = process_composite_to_mask(mask_image['background'], None, True) image.save("image.png") image = process_and_encode_image(image) mask.save("mask.png") mask_image = process_and_encode_image(mask) out_painting_params = { "image": image, "outPaintingMode": outpainting_mode, ## Malformed JSON Error **({"maskImage": mask_image} if mask_image not in [None, ""] else {}), **({"maskPrompt": mask_prompt} if mask_prompt not in [None, ""] else {}), **({"text": text} if text not in [None, ""] else {"text": " "}), **({"negativeText": negative_text} if negative_text not in [None, ""] else {}) } body = build_request("OUTPAINTING", out_painting_params, height, width, quality, cfg_scale, seed) result = generate_image(body) return check_return(result) def image_variation(images, text=None, negative_text=None, similarity_strength=0.5, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0): encoded_images = [] for image_path in images: with open(image_path, "rb") as image_file: value = process_and_encode_image(image_file) if len(value) < 200: return None, gr.update(visible=True, value=value) encoded_images.append(value) image_variation_params = { "images": encoded_images, **({"similarityStrength": similarity_strength} if similarity_strength not in [None, ""] else {}), **({"text": text} if text not in [None, ""] else {}), **({"negativeText": negative_text} if negative_text not in [None, ""] else {}) } body = build_request("IMAGE_VARIATION", image_variation_params, height, width, quality, cfg_scale, seed) result = generate_image(body) return check_return(result) def image_conditioning(condition_image, text, negative_text=None, control_mode="CANNY_EDGE", control_strength=0.7, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0): condition_image_encoded = process_and_encode_image(condition_image) if len(condition_image_encoded) < 200: return None, gr.update(visible=True, value=condition_image_encoded) text_to_image_params = { "text": text, "controlMode": control_mode, "controlStrength": control_strength, "conditionImage": condition_image_encoded, **({"negativeText": negative_text} if negative_text not in [None, ""] else {}) } body = build_request("TEXT_IMAGE", text_to_image_params, height, width, quality, cfg_scale, seed) result = generate_image(body) return check_return(result) def color_guided_content(text=None, reference_image=None, negative_text=None, colors=None, height=1024, width=1024, quality="standard", cfg_scale=8.0, seed=0): reference_image_str = None if reference_image is not None and not isinstance(reference_image, type(None)): reference_image_encoded = process_and_encode_image(reference_image) if len(reference_image_encoded) < 200: return None, gr.update(visible=True, value=reference_image_encoded) if not colors: colors = "#FF5733,#33FF57,#3357FF,#FF33A1,#33FFF5,#FF8C33,#8C33FF,#33FF8C,#FF3333,#33A1FF" color_guided_generation_params = { "text": text, "colors": [color.strip() for color in colors.split(',')], **({"referenceImage": reference_image_encoded} if reference_image_str is not None else {}), **({"negativeText": negative_text} if negative_text not in [None, ""] else {}) } body = build_request("COLOR_GUIDED_GENERATION", color_guided_generation_params, height, width, quality, cfg_scale, seed) result = generate_image(body) return check_return(result) def background_removal(image): input_image = process_and_encode_image(image) if len(input_image) < 200: return None, gr.update(visible=True, value=input_image) body = json.dumps({ "taskType": "BACKGROUND_REMOVAL", "backgroundRemovalParams": { "image": input_image } }) result = generate_image(body) return check_return(result) def generate_nova_prompt(): with open('seeds.json', 'r') as file: data = json.load(file) if 'seeds' not in data or not isinstance(data['seeds'], list): raise ValueError("The JSON file must contain a 'seeds' key with a list of strings.") random_string = random.choice(data['seeds']) prompt = f""" Generate a creative image prompt that builds upon this concept: "{random_string}" Requirements: - Create a new, expanded prompt without mentioning or repeating the original concept - Focus on vivid visual details and artistic elements - Keep the prompt under 1000 characters - Do not include any meta-instructions or seed references - Return only the new prompt text Response Format: [Just the new prompt text, nothing else] """ messages = [ {"role": "user", "content": [{"text": prompt}]} ] return generate_prompt(messages)