import gradio as gr
from functions import *
from dataclasses import dataclass
@dataclass
class Config:
min_size: int = 256
max_size: int = 2048
step_size: int = 64
default_size: int = 1024
default_cfg_scale: float = 8.0
default_seed: int = 8
config = Config()
def update_mask_editor(img):
if img['background'] is None:
return None
return create_padded_image(img)
def create_advanced_options():
negative_text = gr.Textbox(label="Negative Prompt", placeholder="Describe what not to include (1-1024 characters)", max_lines=1)
width = gr.Slider(minimum=config.min_size, maximum=config.max_size, step=config.step_size, value=config.default_size, label="Width")
height = gr.Slider(minimum=config.min_size, maximum=config.max_size, step=config.step_size, value=config.default_size, label="Height")
quality = gr.Radio(choices=["standard", "premium"], value="standard", label="Quality")
cfg_scale = gr.Slider(minimum=1.0, maximum=20.0, step=0.1, value=config.default_cfg_scale, label="CFG Scale")
seed = gr.Slider(minimum=1, maximum=2000, step=1, value=config.default_seed, label="Seed")
return negative_text, width, height, quality, cfg_scale, seed
# Gradio Interface
with gr.Blocks() as demo:
gr.HTML("""
""")
gr.Markdown("
AWS Nova Canvas Image Generation
", elem_classes="center-markdown" )
with gr.Tab("Text to Image"):
with gr.Column():
gr.Markdown("""
Generate an image from a text prompt using the AWS Nova Canvas model.
""", elem_classes="center-markdown")
output = gr.Image()
with gr.Accordion("Advanced Options", open=False):
negative_text, width, height, quality, cfg_scale, seed = create_advanced_options()
prompt = gr.Textbox(label="Prompt", placeholder="Enter a text prompt (1-1024 characters)", max_lines=4)
error_box = gr.Markdown(visible=False, label="Error", elem_classes="center-markdown")
with gr.Row():
gr.Button("Generate Prompt").click(generate_nova_prompt, outputs=prompt)
gr.Button("Generate Image").click(text_to_image, inputs=[prompt, negative_text, height, width, quality, cfg_scale, seed], outputs=[output, error_box])
with gr.Tab("Inpainting"):
with gr.Column():
gr.Markdown("""
Modify specific areas of your image using inpainting. Upload your base image, then specify areas to edit using either
the in-app editing tool to draw masks or the Mask Prompt field to let the model infer the mask. Note that only one masking
method can be used at a time. You can provide an optional prompt to guide how the model fills in masked areas.""", elem_classes="center-markdown")
mask_image = gr.ImageEditor(
type="pil",
height="100%",
width="100%",
crop_size="1:1",
brush={"color": "#000000", "radius": 25},
show_download_button=False,
show_share_button=False,
sources = ["upload"],
transforms = None,
layers = False,
label="Draw mask (black areas will be edited)",
)
with gr.Accordion("Optional Mask Prompt", open=False):
mask_prompt = gr.Textbox(label="Mask Prompt", placeholder="Describe regions to edit", max_lines=1)
with gr.Accordion("Advanced Options", open=False):
negative_text, width, height, quality, cfg_scale, seed = create_advanced_options()
error_box = gr.Markdown(visible=False, label="Error", elem_classes="center-markdown")
prompt = gr.Textbox(label="Prompt", placeholder="Describe what to generate (1-1024 characters) in the masked area", max_lines=4)
output = gr.Image()
with gr.Row():
gr.Button("Generate Prompt").click(generate_nova_prompt, outputs=prompt)
gr.Button("Generate Image").click(inpainting, inputs=[mask_image,mask_prompt, prompt, negative_text, height, width, quality, cfg_scale, seed], outputs=[output, error_box])
with gr.Tab("Outpainting"):
with gr.Column():
gr.Markdown("""
Modify areas outside of your image using outpainting. Add transparent padding for a border, and use the crop feature to
position your base image. The model can infer the mask from your Mask Prompt. Choose between precise mask boundaries or
smooth transitions between masked and unmasked areas, and optionally provide a prompt to guide how masked areas are filled.
""", elem_classes="center-markdown")
mask_image = gr.ImageEditor(
type="pil",
height="100%",
width="100%",
crop_size="1:1",
brush=False,
show_download_button=False,
show_share_button=False,
sources = ["upload"],
layers = False,
label="Crop the Image (transparent areas will be edited)"
)
gr.Button("Create Padding").click(fn=update_mask_editor, inputs=[mask_image], outputs=[mask_image])
with gr.Accordion("Optional Mask Prompt", open=False):
mask_prompt = gr.Textbox(label="Mask Prompt", placeholder="Describe regions to edit", max_lines=1)
with gr.Accordion("Advanced Options", open=False):
outpainting_mode = gr.Radio(choices=["DEFAULT", "PRECISE"], value="DEFAULT", label="Outpainting Mode")
negative_text, width, height, quality, cfg_scale, seed = create_advanced_options()
error_box = gr.Markdown(visible=False, label="Error", elem_classes="center-markdown")
prompt = gr.Textbox(label="Prompt", placeholder="Describe what to generate (1-1024 characters)", max_lines=4)
output = gr.Image()
with gr.Row():
gr.Button("Generate Prompt").click(generate_nova_prompt, outputs=prompt)
gr.Button("Generate Image").click(outpainting, inputs=[mask_image, mask_prompt, prompt, negative_text, outpainting_mode, height, width, quality, cfg_scale, seed], outputs=[output, error_box])
with gr.Tab("Image Variation"):
with gr.Column():
gr.Markdown("""
Create a variation image based on up to 5 other images and a Similarity slider available in options. You can add a prompt to direct the
model (optional). Images should be .png or .jpg.
""", elem_classes="center-markdown")
images = gr.File(type='filepath', label="Input Images", file_count="multiple", file_types=["image"])
with gr.Accordion("Optional Prompt", open=False):
prompt = gr.Textbox(label="Prompt", placeholder="Enter a text prompt (1-1024 characters)", max_lines=4)
gr.Button("Generate Prompt").click(generate_nova_prompt, outputs=prompt)
with gr.Accordion("Advanced Options", open=False):
similarity_strength = gr.Slider(minimum=0.2, maximum=1.0, step=0.1, value=0.7, label="Similarity Strength")
negative_text, width, height, quality, cfg_scale, seed = create_advanced_options()
error_box = gr.Markdown(visible=False, label="Error", elem_classes="center-markdown")
output = gr.Image()
gr.Button("Generate Image").click(image_variation, inputs=[images, prompt, negative_text, similarity_strength, height, width, quality, cfg_scale, seed], outputs=[output, error_box])
with gr.Tab("Image Conditioning"):
with gr.Column():
gr.Markdown("""
Generate an image conditioned by an input image. You need to add a text prompt to direct the model (required).
You have two modes to control the conditioning,"CANNY" and "SEGMENTATION". CANNY will follow the edges of the conditioning image closely.
SEGMENTATION will follow the layout or shapes of the conditioning image.
""", elem_classes="center-markdown")
condition_image = gr.Image(type='pil', label="Condition Image")
with gr.Accordion("Advanced Options", open=False):
control_mode = gr.Radio(choices=["CANNY_EDGE", "SEGMENTATION"], value="CANNY_EDGE", label="Control Mode")
control_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Control Strength")
negative_text, width, height, quality, cfg_scale, seed = create_advanced_options()
error_box = gr.Markdown(visible=False, label="Error", elem_classes="center-markdown")
prompt = gr.Textbox(label="Prompt", placeholder="Enter a text prompt (1-1024 characters)", max_lines=4)
output = gr.Image()
with gr.Row():
gr.Button("Generate Prompt").click(generate_nova_prompt, outputs=prompt)
gr.Button("Generate Image").click(image_conditioning, inputs=[condition_image, prompt, negative_text, control_mode, control_strength, height, width, quality, cfg_scale, seed], outputs=[output, error_box])
with gr.Tab("Color Guided"):
with gr.Column():
gr.Markdown("""
Generate an image using a color palette. This mode requires a text prompt and a color list. If you choose to include an image, the subject and style will be used as a reference.
The colors of the image will also be incorporated, along with the colors from the colors list. A generic color list has been provided behind the scenes if one isn't added.
""", elem_classes="center-markdown")
with gr.Row():
with gr.Column(scale=70):
colors = gr.Textbox(label="Colors", placeholder="Enter up to 10 colors as hex values, e.g., #00FF00,#FCF2AB", max_lines=1)
with gr.Column(scale=30):
color_picker = gr.ColorPicker(label="Color Picker", show_label=False, value='#473c80', interactive=True)
#add_color_button = gr.Button("Add Color")
#add_color_button.click(fn=add_color_to_list, inputs=[colors, color_picker], outputs=colors)
with gr.Accordion("Advanced Options", open=False):
negative_text, width, height, quality, cfg_scale, seed = create_advanced_options()
with gr.Accordion("Optional Reference Image", open=False):
reference_image = gr.Image(type='pil', label="Reference Image")
error_box = gr.Markdown(visible=False, label="Error", elem_classes="center-markdown")
prompt = gr.Textbox(label="Prompt", placeholder="Enter a text prompt (1-1024 characters)", max_lines=4)
output = gr.Image()
with gr.Row():
gr.Button("Generate Prompt").click(generate_nova_prompt, outputs=prompt)
gr.Button("Generate Image").click(color_guided_content, inputs=[prompt, reference_image, negative_text, colors, height, width, quality, cfg_scale, seed], outputs=[output, error_box])
with gr.Tab("Background Removal"):
with gr.Column():
gr.Markdown("""
Remove the background from an image.
""", elem_classes="center-markdown")
image = gr.Image(type='pil', label="Input Image")
error_box = gr.Markdown(visible=False, label="Error", elem_classes="center-markdown")
output = gr.Image()
gr.Button("Generate Image").click(background_removal, inputs=image, outputs=[output, error_box])
with gr.Accordion("Tips", open=False):
gr.Markdown("On Inference Speed: Resolution (width/height), and quality all have an impact on Inference Speed.")
gr.Markdown("On Negation: For example, consider the prompt \"a rainy city street at night with no people\". The model might interpret \"people\" as a directive of what to include instead of omit. To generate better results, you could use the prompt \"a rainy city street at night\" with a negative prompt \"people\".")
gr.Markdown("On Prompt Length: When diffusion models were first introduced, they could process only 77 tokens. While new techniques have extended this limit, they remain bound by their training data. AWS Nova Canvas limits input by character length instead, ensuring no characters beyond the set limit are considered in the generated model.")
gr.Markdown("""Sample Prompts and Results
""", elem_classes="center-markdown")
# Example 1
with gr.Row():
with gr.Column():
gr.Image("examples/sample2.png", width=200, show_label=False, show_download_button=False, show_share_button=False, container=False)
with gr.Column():
gr.Markdown("""A whimsical outdoor scene where vibrant flowers and sprawling vines, crafted from an array of colorful fruit leathers and intricately designed candies, flutter with delicate, lifelike butterflies made from translucent, shimmering sweets. Each petal and leaf glistens with a soft, sugary sheen, casting playful reflections. The butterflies, with their candy wings adorned in fruity patterns, flit about, creating a magical, edible landscape that delights the senses.""")
# Example 2
with gr.Row():
with gr.Column():
gr.Image("examples/sample3.png", width=200, show_label=False, show_download_button=False, show_share_button=False, container=False)
with gr.Column():
gr.Markdown("""A Kansas Jayhawk with a basketball photorealistic""")
# Example 3
with gr.Row():
with gr.Column():
gr.Image("examples/sample4.png", width=200, show_label=False, show_download_button=False, show_share_button=False, container=False)
with gr.Column():
gr.Markdown("""A rugged adventurer's ensemble, crafted for the wild, featuring a khaki jacket adorned with numerous functional pockets, a sun-bleached pith hat with a wide brim, sturdy canvas trousers with reinforced knees, and a pair of weathered leather boots with high-traction soles. Accented with a brass compass pendant and a leather utility belt laden with small tools, the outfit is completed by a pair of aviator sunglasses and a weathered map tucked into a side pocket.""")
if __name__ == "__main__":
demo.launch()