Spaces:
Sleeping
Sleeping
File size: 9,730 Bytes
6b466a0 5e303ea 6b466a0 561ca81 5e303ea ab85003 6b466a0 5e303ea 29972a6 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 0791700 561ca81 5e303ea 6b466a0 5e303ea 6b466a0 9ad9458 6b466a0 561ca81 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 561ca81 9ad9458 6b466a0 5e303ea 6b466a0 99dd4f5 6b466a0 60c9ed5 5e6b514 60c9ed5 5e303ea 6b466a0 29972a6 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 0791700 6b466a0 0791700 0263b44 75f4b9d a7841c1 0791700 6b466a0 6d1e8e5 6b466a0 5e303ea 6b466a0 5e303ea 0791700 5e303ea 2263e88 6b466a0 0791700 5e303ea b644119 5e303ea 0263b44 0791700 5e303ea 0263b44 5e303ea 6b466a0 0791700 6b466a0 5e303ea 6b466a0 5e303ea 0791700 5e303ea 0791700 6b466a0 5e303ea 6b466a0 b644119 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e6b514 0791700 5e6b514 6b466a0 0791700 657f6af 0791700 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e303ea 6b466a0 5e6b514 5e303ea 6b466a0 5e303ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
"""
RWKV RNN Model - Gradio Space for HuggingFace
YT - Mean Gene Hacks - https://www.youtube.com/@MeanGeneHacks
(C) Gene Ruebsamen - 2/7/2023
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import gradio as gr
import codecs
from ast import literal_eval
from datetime import datetime
from rwkvstic.load import RWKV
from config import config, title
import torch
import gc
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
desc = '''<p>RNN with Transformer-level LLM Performance (<a href='https://github.com/BlinkDL/RWKV-LM'>github</a>).
According to the author: "It combines the best of RNN and transformers - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding."'''
thanks = '''<p>Thanks to <a href='https://github.com/gururise/rwkv_gradio'>Gururise</a> for this template</p>'''
def to_md(text):
return text.replace("\n", "<br />")
def get_model():
model = None
model = RWKV(
**config
)
return model
model = get_model()
def infer(
prompt,
mode="generative",
max_new_tokens=10,
temperature=0.1,
top_p=1.0,
stop="<|endoftext|>",
end_adj=0.0,
seed=42,
):
global model
if model == None:
gc.collect()
if (DEVICE == "cuda"):
torch.cuda.empty_cache()
model = get_model()
max_new_tokens = int(max_new_tokens)
temperature = float(temperature)
end_adj = float(end_adj)
top_p = float(top_p)
stop = [x.strip(' ') for x in stop.split(',')]
seed = seed
assert 1 <= max_new_tokens <= 512
assert 0.0 <= temperature <= 5.0
assert 0.0 <= top_p <= 1.0
temperature = max(0.05, temperature)
if prompt == "":
prompt = " "
# Clear model state for generative mode
model.resetState()
if (mode == "Q/A"):
prompt = f"\nQ: {prompt}\n\nA:"
if (mode == "ELDR"):
prompt = f"\n{prompt}\n\nExpert Long Detailed Response:\n\nHi, thanks for reaching out, we would be happy to answer your question"
if (mode == "Expert"):
prompt = f"\n{prompt}\n\nExpert Full Response:\n\nHi, thanks for reaching out, we would be happy to answer your question.\n"
if (mode == "EFA"):
prompt = f'\nAsk Expert\n\nQuestion:\n{prompt}\n\nExpert Full Answer:\n'
if (mode == "BFR"):
prompt = f"Task given:\n\n{prompt}\n\nBest Full Response:"
print(f"PROMPT ({datetime.now()}):\n-------\n{prompt}")
print(f"OUTPUT ({datetime.now()}):\n-------\n")
# Load prompt
model.loadContext(newctx=prompt)
generated_text = ""
done = False
with torch.no_grad():
for _ in range(max_new_tokens):
char = model.forward(stopStrings=stop, temp=temperature, top_p_usual=top_p, end_adj=end_adj)[
"output"]
print(char, end='', flush=True)
generated_text += char
generated_text = generated_text.lstrip("\n ")
for stop_word in stop:
stop_word = codecs.getdecoder("unicode_escape")(stop_word)[0]
if stop_word != '' and stop_word in generated_text:
done = True
break
yield generated_text
if done:
print("<stopped>\n")
break
# print(f"{generated_text}")
for stop_word in stop:
stop_word = codecs.getdecoder("unicode_escape")(stop_word)[0]
if stop_word != '' and stop_word in generated_text:
generated_text = generated_text[:generated_text.find(stop_word)]
gc.collect()
yield generated_text
username = "USER"
intro = f'''The following is a verbose and detailed conversation between an AI assistant called FRITZ, and a human user called USER. FRITZ is intelligent, knowledgeable, wise and polite.
{username}: What year was the french revolution?
FRITZ: The French Revolution started in 1789, and lasted 10 years until 1799.
{username}: 3+5=?
FRITZ: The answer is 8.
{username}: What year did the Berlin Wall fall?
FRITZ: The Berlin wall stood for 28 years and fell in 1989.
{username}: solve for a: 9-a=2
FRITZ: The answer is a=7, because 9-7 = 2.
{username}: wat is lhc
FRITZ: The Large Hadron Collider (LHC) is a high-energy particle collider, built by CERN, and completed in 2008. It was used to confirm the existence of the Higgs boson in 2012.
{username}: Tell me about yourself.
FRITZ: My name is Fritz. I am an RNN based Large Language Model (LLM).
'''
model.resetState()
model.loadContext(newctx=intro)
chatState = model.getState()
model.resetState()
def chat(
prompt,
history,
max_new_tokens=10,
temperature=0.1,
top_p=1.0,
seed=42,
):
global model
global username
history = history or []
intro = ""
if model == None:
gc.collect()
if (DEVICE == "cuda"):
torch.cuda.empty_cache()
model = get_model()
username = username.strip()
username = username or "USER"
if len(history) == 0:
# no history, so lets reset chat state
model.setState(chatState)
history = [[], model.emptyState]
print("reset chat state")
else:
if (history[0][0][0].split(':')[0] != username):
model.setState((chatState[0],chatState[1].clone()))
history = [[], model.chatState]
print("username changed, reset state")
else:
model.setState((history[1][0],history[1][1].clone()))
intro = ""
max_new_tokens = int(max_new_tokens)
temperature = float(temperature)
top_p = float(top_p)
seed = seed
assert 1 <= max_new_tokens <= 512
assert 0.0 <= temperature <= 3.0
assert 0.0 <= top_p <= 1.0
temperature = max(0.05, temperature)
prompt = f"{username}: " + prompt + "\n"
print(f"CHAT ({datetime.now()}):\n-------\n{prompt}")
print(f"OUTPUT ({datetime.now()}):\n-------\n")
# Load prompt
model.loadContext(newctx=prompt)
out = model.forward(number=max_new_tokens, stopStrings=[
"<|endoftext|>", username+":"], temp=temperature, top_p_usual=top_p)
generated_text = out["output"].lstrip("\n ")
generated_text = generated_text.rstrip(username+":")
print(f"{generated_text}")
gc.collect()
history[0].append((prompt, generated_text))
return history[0], [history[0], out["state"]]
examples = [
[
# Question Answering
'''What is the capital of Germany?''', "Q/A", 25, 0.2, 1.0, "<|endoftext|>"],
[
# Question Answering
'''Are humans good or bad?''', "Q/A", 150, 0.8, 0.8, "<|endoftext|>"],
[
# Question Answering
'''What is the purpose of Vitamin A?''', "Q/A", 50, 0.2, 0.8, "<|endoftext|>"],
[
# Chatbot
'''This is a conversation between two AI large language models named Alex and Fritz. They are exploring each other's capabilities, and trying to ask interesting questions of one another to explore the limits of each others AI.
Conversation:
Alex: Good morning, Fritz, what type of LLM are you based upon?
Fritz: Morning Alex, I am an RNN with transformer level performance. My language model is 100% attention free.
Alex:''', "generative", 220, 0.9, 0.9, "\\n\\n,<|endoftext|>"],
[
# Generate List
'''Task given:
Please Write a Short story about a cat learning python
Best Full Response:
''', "generative", 140, 0.85, 0.8, "<|endoftext|>"],
[
# Natural Language Interface
'''Here is a short story (in the style of Tolkien) in which Aiden attacks a robot with a sword:
''', "generative", 140, 0.85, 0.8, "<|endoftext|>"]
]
iface = gr.Interface(
fn=infer,
description=f'''<h3>Generative and Question/Answer</h3>{desc}{thanks}''',
allow_flagging="never",
inputs=[
gr.Textbox(lines=20, label="Prompt"), # prompt
gr.Radio(["Freeform", "Q/A","ELDR","Expert","EFR","BFR"],
value="Expert", label="Choose Mode"),
gr.Slider(1, 512, value=40), # max_tokens
gr.Slider(0.0, 5.0, value=0.9), # temperature
gr.Slider(0.0, 1.0, value=0.85), # top_p
gr.Textbox(lines=1, value="<|endoftext|>"), # stop
gr.Slider(-999, 0.0, value=0.0), # end_adj
],
outputs=gr.Textbox(label="Generated Output", lines=25),
examples=examples,
cache_examples=False,
).queue()
chatiface = gr.Interface(
fn=chat,
description=f'''<h3>Chatbot</h3><h4>Refresh page or change name to reset memory context</h4>{desc}{thanks}''',
allow_flagging="never",
inputs=[
gr.Textbox(lines=5, label="Message"), # prompt
"state",
gr.Slider(1, 256, value=60), # max_tokens
gr.Slider(0.0, 1.0, value=0.8), # temperature
gr.Slider(0.0, 1.0, value=0.85) # top_p
],
outputs=[gr.Chatbot(label="Chat Log", color_map=(
"green", "pink")), "state"],
).queue()
demo = gr.TabbedInterface(
[iface, chatiface], ["Q/A", "Chatbot"],
title=title,
)
demo.queue()
demo.launch(share=False)
|