asda
Browse files- README.md +0 -2
- app.py +63 -167
- requirements.txt +4 -15
README.md
CHANGED
@@ -8,6 +8,4 @@ sdk_version: 4.19.2
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
disable_embedding: true
|
12 |
-
header: mini
|
13 |
---
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
|
|
11 |
---
|
app.py
CHANGED
@@ -1,79 +1,36 @@
|
|
1 |
-
|
2 |
-
StableDiffusionXLPipeline,
|
3 |
-
EulerDiscreteScheduler,
|
4 |
-
UNet2DConditionModel,
|
5 |
-
AutoencoderTiny,
|
6 |
-
)
|
7 |
import torch
|
8 |
-
import
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
-
|
11 |
-
|
12 |
-
from PIL import Image
|
13 |
-
import gradio as gr
|
14 |
-
import time
|
15 |
from safetensors.torch import load_file
|
16 |
-
import
|
17 |
-
import
|
18 |
-
from
|
19 |
-
|
20 |
-
# Constants
|
21 |
-
BASE = "stabilityai/stable-diffusion-xl-base-1.0"
|
22 |
-
REPO = "ByteDance/SDXL-Lightning"
|
23 |
-
# 1-step
|
24 |
-
CHECKPOINT = "sdxl_lightning_2step_unet.safetensors"
|
25 |
-
taesd_model = "madebyollin/taesdxl"
|
26 |
-
|
27 |
-
# {
|
28 |
-
# "1-Step": ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
29 |
-
# "2-Step": ["sdxl_lightning_2step_unet.safetensors", 2],
|
30 |
-
# "4-Step": ["sdxl_lightning_4step_unet.safetensors", 4],
|
31 |
-
# "8-Step": ["sdxl_lightning_8step_unet.safetensors", 8],
|
32 |
-
# }
|
33 |
-
|
34 |
|
35 |
-
SFAST_COMPILE = os.environ.get("SFAST_COMPILE", "0") == "1"
|
36 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
37 |
-
USE_TAESD = os.environ.get("USE_TAESD", "0") == "1"
|
38 |
-
|
39 |
-
# check if MPS is available OSX only M1/M2/M3 chips
|
40 |
-
|
41 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
-
torch_device = device
|
43 |
-
torch_dtype = torch.float16
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
"
|
53 |
-
|
54 |
-
unet.load_state_dict(load_file(hf_hub_download(REPO, CHECKPOINT), device="cuda"))
|
55 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
56 |
-
BASE, unet=unet, torch_dtype=torch.float16, variant="fp16", safety_checker=False
|
57 |
-
).to("cuda")
|
58 |
|
59 |
-
if USE_TAESD:
|
60 |
-
pipe.vae = AutoencoderTiny.from_pretrained(
|
61 |
-
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
62 |
-
).to(device)
|
63 |
|
|
|
|
|
|
|
64 |
|
65 |
-
# Ensure sampler uses "trailing" timesteps.
|
66 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
67 |
-
pipe.scheduler.config, timestep_spacing="trailing"
|
68 |
-
)
|
69 |
-
pipe.set_progress_bar_config(disable=True)
|
70 |
if SAFETY_CHECKER:
|
71 |
from safety_checker import StableDiffusionSafetyChecker
|
72 |
from transformers import CLIPFeatureExtractor
|
73 |
|
74 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
75 |
"CompVis/stable-diffusion-safety-checker"
|
76 |
-
).to(
|
77 |
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
78 |
"openai/clip-vit-base-patch32"
|
79 |
)
|
@@ -81,125 +38,64 @@ if SAFETY_CHECKER:
|
|
81 |
def check_nsfw_images(
|
82 |
images: list[Image.Image],
|
83 |
) -> tuple[list[Image.Image], list[bool]]:
|
84 |
-
safety_checker_input = feature_extractor(images, return_tensors="pt").to(
|
85 |
has_nsfw_concepts = safety_checker(
|
86 |
images=[images],
|
87 |
-
clip_input=safety_checker_input.pixel_values.to(
|
88 |
)
|
89 |
|
90 |
return images, has_nsfw_concepts
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
if SFAST_COMPILE:
|
94 |
-
from sfast.compilers.diffusion_pipeline_compiler import compile, CompilationConfig
|
95 |
-
|
96 |
-
# sfast compilation
|
97 |
-
config = CompilationConfig.Default()
|
98 |
-
try:
|
99 |
-
import xformers
|
100 |
-
|
101 |
-
config.enable_xformers = True
|
102 |
-
except ImportError:
|
103 |
-
print("xformers not installed, skip")
|
104 |
-
try:
|
105 |
-
import triton
|
106 |
-
|
107 |
-
config.enable_triton = True
|
108 |
-
except ImportError:
|
109 |
-
print("Triton not installed, skip")
|
110 |
-
# CUDA Graph is suggested for small batch sizes and small resolutions to reduce CPU overhead.
|
111 |
-
# But it can increase the amount of GPU memory used.
|
112 |
-
# For StableVideoDiffusionPipeline it is not needed.
|
113 |
-
config.enable_cuda_graph = True
|
114 |
-
|
115 |
-
pipe = compile(pipe, config)
|
116 |
-
|
117 |
-
|
118 |
-
def predict(prompt, seed=1231231):
|
119 |
-
generator = torch.manual_seed(seed)
|
120 |
-
last_time = time.time()
|
121 |
-
results = pipe(
|
122 |
-
prompt=prompt,
|
123 |
-
generator=generator,
|
124 |
-
num_inference_steps=2,
|
125 |
-
guidance_scale=0.0,
|
126 |
-
# width=768,
|
127 |
-
# height=768,
|
128 |
-
output_type="pil",
|
129 |
-
)
|
130 |
-
print(f"Pipe took {time.time() - last_time} seconds")
|
131 |
if SAFETY_CHECKER:
|
132 |
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
133 |
if any(has_nsfw_concepts):
|
134 |
gr.Warning("NSFW content detected.")
|
135 |
return Image.new("RGB", (512, 512))
|
136 |
-
|
137 |
-
|
138 |
-
image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True)
|
139 |
-
return Path(tmpfile.name)
|
140 |
|
141 |
|
142 |
-
|
143 |
-
#
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
#intro{
|
148 |
-
max-width: 100%;
|
149 |
-
margin: 0 auto;
|
150 |
-
}
|
151 |
"""
|
152 |
-
with gr.Blocks(css=css) as demo:
|
153 |
-
with gr.Column(elem_id="container"):
|
154 |
-
gr.Markdown(
|
155 |
-
"""
|
156 |
-
# SDXL-Lightning- Text To Image 2-Steps
|
157 |
-
**Model**: https://huggingface.co/ByteDance/SDXL-Lightning
|
158 |
-
""",
|
159 |
-
elem_id="intro",
|
160 |
-
)
|
161 |
-
with gr.Row():
|
162 |
-
with gr.Row():
|
163 |
-
prompt = gr.Textbox(
|
164 |
-
placeholder="Insert your prompt here:", scale=5, container=False
|
165 |
-
)
|
166 |
-
generate_bt = gr.Button("Generate", scale=1)
|
167 |
-
|
168 |
-
image = gr.Image(type="filepath")
|
169 |
-
with gr.Accordion("Advanced options", open=False):
|
170 |
-
seed = gr.Slider(
|
171 |
-
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
|
172 |
-
)
|
173 |
-
with gr.Accordion("Run with diffusers"):
|
174 |
-
gr.Markdown(
|
175 |
-
"""## Running SDXL-Lightning with `diffusers`
|
176 |
-
```py
|
177 |
-
import torch
|
178 |
-
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
179 |
-
from huggingface_hub import hf_hub_download
|
180 |
-
from safetensors.torch import load_file
|
181 |
-
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
182 |
-
repo = "ByteDance/SDXL-Lightning"
|
183 |
-
ckpt = "sdxl_lightning_2step_unet.safetensors" # Use the correct ckpt for your step setting!
|
184 |
-
# Load model.
|
185 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
186 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
187 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
188 |
-
# Ensure sampler uses "trailing" timesteps.
|
189 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
190 |
-
# Ensure using the same inference steps as the loaded model and CFG set to 0.
|
191 |
-
pipe("A girl smiling", num_inference_steps=2, guidance_scale=0).images[0].save("output.png")
|
192 |
-
```
|
193 |
-
"""
|
194 |
-
)
|
195 |
-
|
196 |
-
inputs = [prompt, seed]
|
197 |
-
outputs = [image]
|
198 |
-
generate_bt.click(
|
199 |
-
fn=predict, inputs=inputs, outputs=outputs, show_progress=False
|
200 |
-
)
|
201 |
-
prompt.input(fn=predict, inputs=inputs, outputs=outputs, show_progress=False)
|
202 |
-
seed.change(fn=predict, inputs=inputs, outputs=outputs, show_progress=False)
|
203 |
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
5 |
from safetensors.torch import load_file
|
6 |
+
import spaces
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Constants
|
13 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
14 |
+
repo = "ByteDance/SDXL-Lightning"
|
15 |
+
checkpoints = {
|
16 |
+
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
17 |
+
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
18 |
+
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
19 |
+
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
20 |
+
}
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
24 |
+
if torch.cuda.is_available():
|
25 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
26 |
|
|
|
|
|
|
|
|
|
|
|
27 |
if SAFETY_CHECKER:
|
28 |
from safety_checker import StableDiffusionSafetyChecker
|
29 |
from transformers import CLIPFeatureExtractor
|
30 |
|
31 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
32 |
"CompVis/stable-diffusion-safety-checker"
|
33 |
+
).to("cuda")
|
34 |
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
35 |
"openai/clip-vit-base-patch32"
|
36 |
)
|
|
|
38 |
def check_nsfw_images(
|
39 |
images: list[Image.Image],
|
40 |
) -> tuple[list[Image.Image], list[bool]]:
|
41 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
42 |
has_nsfw_concepts = safety_checker(
|
43 |
images=[images],
|
44 |
+
clip_input=safety_checker_input.pixel_values.to("cuda")
|
45 |
)
|
46 |
|
47 |
return images, has_nsfw_concepts
|
48 |
|
49 |
+
# Function
|
50 |
+
@spaces.GPU(enable_queue=True)
|
51 |
+
def generate_image(prompt, ckpt):
|
52 |
+
|
53 |
+
checkpoint = checkpoints[ckpt][0]
|
54 |
+
num_inference_steps = checkpoints[ckpt][1]
|
55 |
+
|
56 |
+
if num_inference_steps==1:
|
57 |
+
# Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference.
|
58 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
59 |
+
else:
|
60 |
+
# Ensure sampler uses "trailing" timesteps.
|
61 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
62 |
+
|
63 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
64 |
+
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
if SAFETY_CHECKER:
|
67 |
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
68 |
if any(has_nsfw_concepts):
|
69 |
gr.Warning("NSFW content detected.")
|
70 |
return Image.new("RGB", (512, 512))
|
71 |
+
return images[0]
|
72 |
+
return results.images[0]
|
|
|
|
|
73 |
|
74 |
|
75 |
+
|
76 |
+
# Gradio Interface
|
77 |
+
description = """
|
78 |
+
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
79 |
+
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
|
|
|
|
|
|
|
|
|
80 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
with gr.Blocks(css="style.css") as demo:
|
83 |
+
gr.HTML("<h1><center>Text-to-Image with SDXL-Lightning ⚡</center></h1>")
|
84 |
+
gr.Markdown(description)
|
85 |
+
with gr.Group():
|
86 |
+
with gr.Row():
|
87 |
+
prompt = gr.Textbox(label='Enter you image prompt:', scale=8)
|
88 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
89 |
+
submit = gr.Button(scale=1, variant='primary')
|
90 |
+
img = gr.Image(label='SDXL-Lightning Generated Image')
|
91 |
+
|
92 |
+
prompt.submit(fn=generate_image,
|
93 |
+
inputs=[prompt, ckpt],
|
94 |
+
outputs=img,
|
95 |
+
)
|
96 |
+
submit.click(fn=generate_image,
|
97 |
+
inputs=[prompt, ckpt],
|
98 |
+
outputs=img,
|
99 |
+
)
|
100 |
+
|
101 |
+
demo.queue().launch()
|
requirements.txt
CHANGED
@@ -1,16 +1,5 @@
|
|
1 |
-
diffusers==0.26.3
|
2 |
transformers
|
3 |
-
|
4 |
-
torch
|
5 |
-
|
6 |
-
|
7 |
-
Pillow==10.1.0
|
8 |
-
accelerate==0.24.0
|
9 |
-
compel==2.0.2
|
10 |
-
controlnet-aux==0.0.7
|
11 |
-
peft==0.6.0
|
12 |
-
xformers
|
13 |
-
hf_transfer
|
14 |
-
huggingface_hub
|
15 |
-
safetensors
|
16 |
-
stable_fast @ https://github.com/chengzeyi/stable-fast/releases/download/v1.0.2/stable_fast-1.0.2+torch211cu121-cp310-cp310-manylinux2014_x86_64.whl; sys_platform != 'darwin' or platform_machine != 'arm64'
|
|
|
|
|
1 |
transformers
|
2 |
+
diffusers
|
3 |
+
torch
|
4 |
+
accelerate
|
5 |
+
gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|