恢复
Browse files- app.py +85 -17
- requirements.txt +0 -2
app.py
CHANGED
@@ -1,35 +1,103 @@
|
|
|
|
1 |
import torch
|
2 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
from safetensors.torch import load_file
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
7 |
repo = "ByteDance/SDXL-Lightning"
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
13 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
-
pipe("A girl smiling", num_inference_steps=4, guidance_scale=0).images[0].save("output.png")
|
20 |
|
21 |
|
22 |
-
# with gr.Blocks() as demo:
|
23 |
-
# with gr.Gradio():
|
24 |
-
# with gr.Row():
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
# def greet(name):
|
32 |
-
# return "Hello " + name + "!!"
|
33 |
-
#
|
34 |
-
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
35 |
-
# iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from safetensors.torch import load_file
|
6 |
+
import spaces
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
11 |
|
12 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
repo = "ByteDance/SDXL-Lightning"
|
14 |
+
checkpoints = {
|
15 |
+
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
16 |
+
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
17 |
+
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
18 |
+
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
19 |
+
}
|
20 |
+
|
21 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
24 |
+
|
25 |
+
|
26 |
+
if SAFETY_CHECKER:
|
27 |
+
from safety_checker import StableDiffusionSafetyChecker
|
28 |
+
from transformers import CLIPFeatureExtractor
|
29 |
+
|
30 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
31 |
+
"CompVis/stable-diffusion-safety-checker"
|
32 |
+
).to("cuda")
|
33 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
34 |
+
"openai/clip-vit-base-patch32"
|
35 |
+
)
|
36 |
+
|
37 |
+
def check_nsfw_images(
|
38 |
+
images: list[Image.Image],
|
39 |
+
) -> tuple[list[Image.Image], list[bool]]:
|
40 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
41 |
+
has_nsfw_concepts = safety_checker(
|
42 |
+
images=[images],
|
43 |
+
clip_input=safety_checker_input.pixel_values.to("cuda")
|
44 |
+
)
|
45 |
+
|
46 |
+
return images, has_nsfw_concepts
|
47 |
+
|
48 |
+
# Function
|
49 |
+
@spaces.GPU(enable_queue=True)
|
50 |
+
def generate_image(prompt, ckpt):
|
51 |
+
|
52 |
+
checkpoint = checkpoints[ckpt][0]
|
53 |
+
num_inference_steps = checkpoints[ckpt][1]
|
54 |
+
|
55 |
+
if num_inference_steps==1:
|
56 |
+
# Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference.
|
57 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
58 |
+
else:
|
59 |
+
# Ensure sampler uses "trailing" timesteps.
|
60 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
61 |
|
62 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
63 |
+
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
|
|
|
|
64 |
|
65 |
+
if SAFETY_CHECKER:
|
66 |
+
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
67 |
+
if any(has_nsfw_concepts):
|
68 |
+
gr.Warning("NSFW content detected.")
|
69 |
+
return Image.new("RGB", (512, 512))
|
70 |
+
return images[0]
|
71 |
+
return results.images[0]
|
72 |
|
73 |
|
|
|
74 |
|
75 |
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
+
# Gradio Interface
|
79 |
+
description = """
|
80 |
+
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
81 |
+
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
|
82 |
+
"""
|
83 |
|
84 |
+
with gr.Blocks(css="style.css") as demo:
|
85 |
+
gr.HTML("<h1><center>Text-to-Image with SDXL-Lightning ⚡</center></h1>")
|
86 |
+
gr.Markdown(description)
|
87 |
+
with gr.Group():
|
88 |
+
with gr.Row():
|
89 |
+
prompt = gr.Textbox(label='Enter you image prompt:', scale=8)
|
90 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
91 |
+
submit = gr.Button(scale=1, variant='primary')
|
92 |
+
img = gr.Image(label='SDXL-Lightning Generated Image')
|
93 |
|
94 |
+
prompt.submit(fn=generate_image,
|
95 |
+
inputs=[prompt, ckpt],
|
96 |
+
outputs=img,
|
97 |
+
)
|
98 |
+
submit.click(fn=generate_image,
|
99 |
+
inputs=[prompt, ckpt],
|
100 |
+
outputs=img,
|
101 |
+
)
|
102 |
|
103 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
transformers
|
2 |
-
huggingface_hub
|
3 |
-
safetensors
|
4 |
diffusers
|
5 |
torch
|
6 |
accelerate
|
|
|
1 |
transformers
|
|
|
|
|
2 |
diffusers
|
3 |
torch
|
4 |
accelerate
|