Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torchvision.transforms.functional as TF | |
class DoubleConv(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(DoubleConv, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
) | |
def forward(self, x): | |
return self.conv(x) | |
class UNET(nn.Module): | |
def __init__( | |
self, in_channels=3, out_channels=1, features=[64, 128, 256, 512], | |
): | |
super(UNET, self).__init__() | |
self.ups = nn.ModuleList() | |
self.downs = nn.ModuleList() | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
# Down part of UNET | |
for feature in features: | |
self.downs.append(DoubleConv(in_channels, feature)) | |
in_channels = feature | |
# Up part of UNET | |
for feature in reversed(features): | |
self.ups.append( | |
nn.ConvTranspose2d( | |
feature*2, feature, kernel_size=2, stride=2, | |
) | |
) | |
self.ups.append(DoubleConv(feature*2, feature)) | |
self.bottleneck = DoubleConv(features[-1], features[-1]*2) | |
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1) | |
def forward(self, x): | |
skip_connections = [] | |
for down in self.downs: | |
x = down(x) | |
skip_connections.append(x) | |
x = self.pool(x) | |
x = self.bottleneck(x) | |
skip_connections = skip_connections[::-1] | |
for idx in range(0, len(self.ups), 2): | |
x = self.ups[idx](x) | |
skip_connection = skip_connections[idx//2] | |
if x.shape != skip_connection.shape: | |
x = TF.resize(x, size=skip_connection.shape[2:]) | |
concat_skip = torch.cat((skip_connection, x), dim=1) | |
x = self.ups[idx+1](concat_skip) | |
return self.final_conv(x) | |