|
import streamlit as st |
|
import pandas as pd |
|
from keybert import KeyBERT |
|
|
|
import seaborn as sns |
|
|
|
from src.Pipeline.TextSummarization import T5_Base |
|
from src.Pipeline.QuestGen import sense2vec_get_words,get_question |
|
|
|
|
|
st.title("β Intelligent Question Generator") |
|
st.header("") |
|
|
|
|
|
with st.expander("βΉοΈ - About this app", expanded=True): |
|
|
|
st.write( |
|
""" |
|
- The *Intelligent Question Generator* app is an easy-to-use interface built in Streamlit which uses [KeyBERT](https://github.com/MaartenGr/KeyBERT), [Sense2vec](https://github.com/explosion/sense2vec), [T5](https://huggingface.co/ramsrigouthamg/t5_paraphraser) |
|
- It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers](https://huggingface.co/transformers/) π€ to create keywords/keyphrases that are most similar to a document. |
|
- [sense2vec](https://github.com/explosion/sense2vec) (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. |
|
""" |
|
) |
|
|
|
st.markdown("") |
|
|
|
st.markdown("") |
|
st.markdown("## π Paste document ") |
|
|
|
with st.form(key="my_form"): |
|
ce, c1, ce, c2, c3 = st.columns([0.07, 2, 0.07, 5, 1]) |
|
with c1: |
|
ModelType = st.radio( |
|
"Choose your model", |
|
["DistilBERT (Default)", "BERT", "RoBERTa", "ALBERT", "XLNet"], |
|
help="At present, you can choose 1 model ie DistilBERT to embed your text. More to come!", |
|
) |
|
|
|
if ModelType == "Default (DistilBERT)": |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_model(model): |
|
return KeyBERT(model=model) |
|
|
|
kw_model = load_model('roberta') |
|
|
|
else: |
|
@st.cache(allow_output_mutation=True) |
|
def load_model(model): |
|
return KeyBERT(model=model) |
|
|
|
kw_model = load_model("distilbert-base-nli-mean-tokens") |
|
|
|
top_N = st.slider( |
|
"# of results", |
|
min_value=1, |
|
max_value=30, |
|
value=10, |
|
help="You can choose the number of keywords/keyphrases to display. Between 1 and 30, default number is 10.", |
|
) |
|
min_Ngrams = st.number_input( |
|
"Minimum Ngram", |
|
min_value=1, |
|
max_value=4, |
|
help="""The minimum value for the ngram range. |
|
*Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases.To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""", |
|
|
|
) |
|
|
|
max_Ngrams = st.number_input( |
|
"Maximum Ngram", |
|
value=1, |
|
min_value=1, |
|
max_value=4, |
|
help="""The maximum value for the keyphrase_ngram_range. |
|
*Keyphrase_ngram_range* sets the length of the resulting keywords/keyphrases. |
|
To extract keyphrases, simply set *keyphrase_ngram_range* to (1, 2) or higher depending on the number of words you would like in the resulting keyphrases.""", |
|
) |
|
|
|
StopWordsCheckbox = st.checkbox( |
|
"Remove stop words", |
|
value=True, |
|
help="Tick this box to remove stop words from the document (currently English only)", |
|
) |
|
|
|
use_MMR = st.checkbox( |
|
"Use MMR", |
|
value=True, |
|
help="You can use Maximal Margin Relevance (MMR) to diversify the results. It creates keywords/keyphrases based on cosine similarity. Try high/low 'Diversity' settings below for interesting variations.", |
|
) |
|
|
|
Diversity = st.slider( |
|
"Keyword diversity (MMR only)", |
|
value=0.5, |
|
min_value=0.0, |
|
max_value=1.0, |
|
step=0.1, |
|
help="""The higher the setting, the more diverse the keywords.Note that the *Keyword diversity* slider only works if the *MMR* checkbox is ticked.""", |
|
) |
|
|
|
with c2: |
|
doc = st.text_area( |
|
"Paste your text below (max 500 words)", |
|
height=510, |
|
) |
|
|
|
MAX_WORDS = 500 |
|
import re |
|
res = len(re.findall(r"\w+", doc)) |
|
if res > MAX_WORDS: |
|
st.warning( |
|
"β οΈ Your text contains " |
|
+ str(res) |
|
+ " words." |
|
+ " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! π" |
|
) |
|
|
|
doc = doc[:MAX_WORDS] |
|
|
|
|
|
|
|
submit_button = st.form_submit_button(label="β¨ Get me the data!") |
|
|
|
if use_MMR: |
|
mmr = True |
|
else: |
|
mmr = False |
|
|
|
if StopWordsCheckbox: |
|
StopWords = "english" |
|
else: |
|
StopWords = None |
|
|
|
if min_Ngrams > max_Ngrams: |
|
st.warning("min_Ngrams can't be greater than max_Ngrams") |
|
st.stop() |
|
|
|
|
|
|
|
|
|
keywords = kw_model.extract_keywords( |
|
doc, |
|
keyphrase_ngram_range=(min_Ngrams, max_Ngrams), |
|
use_mmr=mmr, |
|
stop_words=StopWords, |
|
top_n=top_N, |
|
diversity=Diversity, |
|
) |
|
|
|
|
|
st.markdown("## π Results ") |
|
|
|
st.header("") |
|
|
|
|
|
df = ( |
|
pd.DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"]) |
|
.sort_values(by="Relevancy", ascending=False) |
|
.reset_index(drop=True) |
|
) |
|
|
|
df.index += 1 |
|
|
|
|
|
cmGreen = sns.light_palette("green", as_cmap=True) |
|
cmRed = sns.light_palette("red", as_cmap=True) |
|
df = df.style.background_gradient( |
|
cmap=cmGreen, |
|
subset=[ |
|
"Relevancy", |
|
], |
|
) |
|
|
|
c1, c2, c3 = st.columns([1, 3, 1]) |
|
|
|
format_dictionary = { |
|
"Relevancy": "{:.2%}", |
|
} |
|
|
|
df = df.format(format_dictionary) |
|
|
|
with c2: |
|
st.table(df) |
|
|
|
with st.expander("Note about Quantitative Relevancy"): |
|
st.markdown( |
|
""" |
|
- The relevancy score is a quantitative measure of how relevant the keyword/keyphrase is to the document. It is calculated using cosine similarity. The higher the score, the more relevant the keyword/keyphrase is to the document. |
|
- So if you see a keyword/keyphrase with a high relevancy score, it means that it is a good keyword/keyphrase to use in question answering, generation ,summarization, and other NLP tasks. |
|
""" |
|
) |
|
|
|
with st.form(key="ques_form"): |
|
ice, ic1, ice, ic2 ,ic3= st.columns([0.07, 2, 0.07, 5,0.07]) |
|
with ic1: |
|
TopN = st.slider( |
|
"Top N sense2vec results", |
|
value=20, |
|
min_value=0, |
|
max_value=50, |
|
step=1, |
|
help="""Get the n most similar terms.""", |
|
) |
|
|
|
with ic2: |
|
input_keyword = st.text_input("Paste any keyword generated above") |
|
keywrd_button = st.form_submit_button(label="β¨ Get me the questions!") |
|
|
|
if keywrd_button: |
|
st.markdown("## π Questions ") |
|
ext_keywrds=sense2vec_get_words(TopN,input_keyword) |
|
if len(ext_keywrds)<1: |
|
st.warning("Sorry questions couldn't be generated") |
|
|
|
for answer in ext_keywrds: |
|
sentence_for_T5=" ".join(doc.split()) |
|
ques=get_question(sentence_for_T5,answer) |
|
ques=ques.replace("<pad>","").replace("</s>","").replace("<s>","") |
|
st.markdown(f'> #### {ques} ') |
|
|
|
|
|
|