Spaces:
Runtime error
Runtime error
import os | |
import requests | |
import streamlit as st | |
from langchain.callbacks.base import BaseCallbackHandler | |
def upload_data(uploaded_files): | |
files = {"file": uploaded_files} | |
with st.spinner("Uploading PDF..."): | |
response = requests.post( | |
"http://127.0.0.1:8000/api/upload", files=files | |
) | |
if response.status_code == 200: | |
st.success( | |
f'{response.json()["message"][0]} Vector Store created successfully!' | |
) | |
st.session_state.uploaded_pdf = True | |
else: | |
st.error("Failed to upload PDF!") | |
class StreamHandler(BaseCallbackHandler): | |
def __init__( | |
self, container: st.delta_generator.DeltaGenerator, initial_text: str = "" | |
): | |
self.container = container | |
self.text = initial_text | |
self.run_id_ignore_token = None | |
def on_llm_start(self, serialized: dict, prompts: list, **kwargs): | |
# Workaround to prevent showing the rephrased question as output | |
if prompts[0].startswith("Human"): | |
self.run_id_ignore_token = kwargs.get("run_id") | |
def on_llm_new_token(self, token: str, **kwargs) -> None: | |
if self.run_id_ignore_token == kwargs.get("run_id", False): | |
return | |
self.text += token | |
self.container.markdown(self.text) | |
class PrintRetrievalHandler(BaseCallbackHandler): | |
def __init__(self, container): | |
self.status = container.status("**Context Retrieval**") | |
def on_retriever_start(self, serialized: dict, query: str, **kwargs): | |
self.status.write(f"**Question:** {query}") | |
self.status.update(label=f"**Context Retrieval:** {query}") | |
def on_retriever_end(self, documents, **kwargs): | |
for idx, doc in enumerate(documents): | |
source = os.path.basename(doc.metadata["source"]) | |
self.status.write(f"**Document {idx} from {source}**") | |
self.status.markdown(doc.page_content) | |
self.status.update(state="complete") | |