import pandas as pd from scipy.stats import pearsonr df = pd.read_csv("traffic.csv") total_pageviews = df['pageviews'].sum() average_daily_pageviews = df['pageviews'].mean() print("Total Pageviews:", total_pageviews) print("Average Daily Pageviews:", average_daily_pageviews) total_events = df['events'].sum() event_distribution = df['events'].value_counts() print("Total Events:", total_events) print("Event Distribution:\n", event_distribution) country_distribution = df.groupby('country')['pageviews'].sum() print("Geographical Distribution:\n", country_distribution) df['CTR'] = df['clicks'] / df['pageviews'] # Calculate CTR overall_ctr = df['CTR'].mean() print("Overall CTR:", overall_ctr) print("CTR by Link:\n", df.groupby('link')['CTR'].mean()) correlation, _ = pearsonr(df['pageviews'], df['clicks']) print("Correlation between Pageviews and Clicks:", correlation)