import gradio as gr from transformers import AutoProcessor, PaliGemmaForConditionalGeneration import requests from PIL import Image import torch # 下载示例图片 torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png') torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png') # 加载模型和处理器 model = PaliGemmaForConditionalGeneration.from_pretrained("ahmed-masry/chartgemma") processor = AutoProcessor.from_pretrained("ahmed-masry/chartgemma") def predict(image, input_text): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) image = image.convert("RGB") inputs = processor(text=input_text, images=image, return_tensors="pt") inputs = {k: v.to(device) for k, v in inputs.items()} prompt_length = inputs['input_ids'].shape[1] # 生成文本 generate_ids = model.generate(**inputs, max_new_tokens=512) output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return output_text examples = [ ["chart_example_1.png", "Describe the trend of the mortality rates for children before age 5"], ["chart_example_2.png", "What is the share of respondents who prefer Facebook Messenger in the 30-59 age group?"] ] title = "ChartGemma 模型的互动式 Gradio 演示" with gr.Blocks(css="theme.css") as demo: gr.Markdown(f"# {title}") with gr.Row(): with gr.Column(): image = gr.Image(type="pil", label="图表图像") input_prompt = gr.Textbox(label="输入") with gr.Column(): model_output = gr.Textbox(label="输出") gr.Examples(examples=examples, inputs=[image, input_prompt]) submit_button = gr.Button("运行") submit_button.click(predict, inputs=[image, input_prompt], outputs=model_output) demo.launch(server_name="0.0.0.0", server_port=7860, share=True)