Spaces:
Sleeping
Sleeping
Custom Model
Browse files- app.py +18 -24
- requirements.txt +4 -0
app.py
CHANGED
@@ -1,39 +1,33 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
model = VisionEncoderDecoderModel.from_pretrained(checkpoint_path).to(device)
|
13 |
|
14 |
-
#
|
|
|
15 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
|
16 |
|
17 |
def ocr_image(image):
|
18 |
"""
|
19 |
-
Perform OCR on
|
20 |
-
:param image: PIL
|
21 |
-
:return: Extracted text
|
22 |
"""
|
23 |
-
|
|
|
24 |
generated_ids = model.generate(pixel_values)
|
25 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
26 |
return generated_text
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
title="OCR with TrOCR",
|
34 |
-
description="Upload an image, and the fine-tuned TrOCR model will extract the text for you."
|
35 |
-
)
|
36 |
-
|
37 |
-
# Launch the Gradio app
|
38 |
-
if __name__ == "__main__":
|
39 |
-
interface.launch()
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import os
|
6 |
|
7 |
+
# Load the model checkpoint and tokenizer files from Hugging Face Model Hub
|
8 |
+
checkpoint_folder = hf_hub_download(repo_id="Heramb26/tr-ocr-custom-checkpoints", filename="checkpoint-2070")
|
9 |
|
10 |
+
# Set up the device (GPU or CPU)
|
11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
12 |
|
13 |
+
# Load the fine-tuned model and processor from the downloaded folder
|
14 |
+
model = VisionEncoderDecoderModel.from_pretrained(checkpoint_folder).to(device)
|
15 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
|
16 |
|
17 |
def ocr_image(image):
|
18 |
"""
|
19 |
+
Perform OCR on an image using the loaded model.
|
20 |
+
:param image: Input PIL image.
|
21 |
+
:return: Extracted text.
|
22 |
"""
|
23 |
+
# Preprocess image and generate OCR text
|
24 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values.to(device)
|
25 |
generated_ids = model.generate(pixel_values)
|
26 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
27 |
return generated_text
|
28 |
|
29 |
+
# Example usage
|
30 |
+
image_path = "path/to/your/image.jpg" # Update with the path to your image
|
31 |
+
image = Image.open(image_path) # Open the image file using PIL
|
32 |
+
extracted_text = ocr_image(image) # Perform OCR on the image
|
33 |
+
print("Extracted Text:", extracted_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
pillow
|