File size: 8,798 Bytes
1d000a8
 
 
 
 
 
 
 
ec81989
0d9bc9e
 
 
 
 
ec81989
0d9bc9e
ec81989
0d9bc9e
 
 
 
 
 
 
 
1d000a8
4b5ced5
1d000a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff61c28
1d000a8
 
 
 
 
 
ff61c28
1d000a8
 
 
 
 
 
 
 
 
4b5ced5
1d000a8
 
 
 
 
 
 
 
 
 
 
 
 
 
ff61c28
1d000a8
 
 
 
24fd9c5
 
 
1d000a8
ec81989
56beaea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec81989
56beaea
4b5ced5
e9f4fe9
ec81989
e9f4fe9
 
ec81989
1d000a8
 
 
 
ec81989
1d000a8
ec81989
1d000a8
ec81989
1d000a8
ec81989
1d000a8
ec81989
56beaea
ec81989
 
1d000a8
ec81989
1d000a8
ec81989
 
 
 
 
 
1d000a8
 
c9496c6
ec81989
 
1d000a8
 
988389b
1d000a8
 
 
 
 
 
 
 
ec81989
 
1d000a8
 
ec81989
 
1d000a8
 
ec81989
1d000a8
 
 
 
 
 
 
 
 
 
ec81989
1d000a8
 
ec81989
 
1d000a8
 
ec81989
1d000a8
 
 
 
 
 
 
 
 
 
e9f4fe9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import librosa
import librosa.display
import gradio as gr
import soundfile as sf
import os
import gettext
import os

font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
if not os.path.exists(font_path):
    font_path = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"  # Fallback font

# Handle missing translation files
locales_dir = 'locales'
try:
    lang = gettext.translation('base', localedir=locales_dir, languages=['en'])
    lang.install()
    _ = lang.gettext
except FileNotFoundError:
    print("Translation file not found, using default language.")
    _ = lambda s: s  # Fallback to the original string if translation is unavailable


# Function for creating a spectrogram image with text
def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5):
    font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
    if os.path.exists(font_path):
        font = ImageFont.truetype(font_path, max_font_size)
    else:
        font = ImageFont.load_default()

    image = Image.new('L', (base_width, height), 'black')
    draw = ImageDraw.Draw(image)
    text_width = 0
    for char in text:
        text_bbox = draw.textbbox((0, 0), char, font=font)
        text_width += text_bbox[2] - text_bbox[0] + letter_spacing
    text_width -= letter_spacing

    if text_width + margin * 2 > base_width:
        width = text_width + margin * 2
    else:
        width = base_width

    image = Image.new('L', (width, height), 'black')
    draw = ImageDraw.Draw(image)
    
    text_x = (width - text_width) // 2
    text_y = (height - (text_bbox[3] - text_bbox[1])) // 2
    for char in text:
        draw.text((text_x, text_y), char, font=font, fill='white')
        char_bbox = draw.textbbox((0, 0), char, font=font)
        text_x += char_bbox[2] - char_bbox[0] + letter_spacing
    
    image = np.array(image)
    image = np.where(image > 0, 255, image)
    return image

# Converting an image to audio
def spectrogram_image_to_audio(image, sr=22050):
    flipped_image = np.flipud(image)
    S = flipped_image.astype(np.float32) / 255.0 * 100.0
    y = librosa.griffinlim(S)
    return y

# Function for creating an audio file and spectrogram from text
def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing):
    spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing)
    y = spectrogram_image_to_audio(spec_image)
    audio_path = 'output.wav'
    sf.write(audio_path, y, 22050)
    image_path = 'spectrogram.png'
    plt.imsave(image_path, spec_image, cmap='gray')
    return audio_path, image_path

# Function for displaying the spectrogram of an audio file
def display_audio_spectrogram(audio_path):
    y, sr = librosa.load(audio_path)
    S = librosa.feature.melspectrogram(y=y, sr=sr)
    S_dB = librosa.power_to_db(S, ref=np.max)

    plt.figure(figsize=(10, 4))
    librosa.display.specshow(S_dB)
    plt.tight_layout()

    spectrogram_path = 'uploaded_spectrogram.png'
    plt.savefig(spectrogram_path)
    plt.close()
    return spectrogram_path

# Converting a downloaded image to an audio spectrogram
def image_to_spectrogram_audio(image_path, sr=22050):
    image = Image.open(image_path).convert('L')
    image = np.array(image)
    y = spectrogram_image_to_audio(image, sr)
    img2audio_path = 'image_to_audio_output.wav'
    sf.write(img2audio_path, y, sr)
    return img2audio_path

informstion = _("""
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Steganography Information</title>
</head>
<body>

    <h1>Ha-Ha-Ha, I'm laughing at you.</h1>
    <p>People, before using this interface, read about what Steganography is.</p>

    <h2>What is STEGANOGRAPHY?</h2>
    <p>
        Steganography is a method of hiding information within other information or a physical object in such a way 
        that it cannot be detected. Using steganography, you can hide almost any digital content, including texts, 
        images, audio, and video files.
    </p>
    <p>
        In this interface, steganography is used to hide text or an image in the spectrogram of a sound.
    </p>

    <img src="https://github.com/user-attachments/assets/972b9e72-d8dc-43f7-a57a-a09a44aa5419" alt="Hidden Image 1">
    <img src="https://github.com/user-attachments/assets/3ceec1ff-afce-4b4a-a387-2b6e589234f7" alt="Hidden Image 2">

</body>
</html>
""")

# Gradio interface
with gr.Blocks(
    title=_('Audio Steganography'),
    theme="Hev832/Applio",
) as iface:
    gr.Markdown(_("# Audio Steganography"))
    
    with gr.Group():
        with gr.Row(variant='panel'):
            with gr.Column():
                gr.HTML(_("<center><h2><a href='https://t.me/pol1trees'>Telegram Channel</a></h2></center>"))
            with gr.Column():
                gr.HTML(_("<center><h2><a href='https://t.me/+GMTP7hZqY0E4OGRi'>Telegram Chat</a></h2></center>"))
            with gr.Column():
                gr.HTML(_("<center><h2><a href='https://www.youtube.com/channel/UCHb3fZEVxUisnqLqCrEM8ZA'>YouTube</a></h2></center>"))
            with gr.Column():
                gr.HTML(_("<center><h2><a href='https://github.com/Bebra777228/Audio-Steganography'>GitHub</a></h2></center>"))

    with gr.Tab(_("INFO")):
        gr.HTML(informstion)
    with gr.Tab(_("Text to Spectrogram")):
        gr.HTML(_("<center><h2>Oh my god people, learn to read. Go to the “INFO” tab, it says what this interface is and what it is for, don't be idiots.</h2></center>"))
        with gr.Group():
            text = gr.Textbox(lines=2, placeholder=_("Enter your text:"), label=_("Text"))
            with gr.Row(variant='panel'):
                base_width = gr.Slider(value=512, label=_("Image Width"), visible=False)
                height = gr.Slider(value=256, label=_("Image Height"), visible=False)
                max_font_size = gr.Slider(minimum=10, maximum=130, step=5, value=80, label=_("Font size"))
                margin = gr.Slider(minimum=0, maximum=50, step=1, value=10, label=_("Indent"))
                letter_spacing = gr.Slider(minimum=0, maximum=50, step=1, value=5, label=_("Letter spacing"))
            generate_button = gr.Button(_("Generate"))
        
        with gr.Column(variant='panel'):
            with gr.Group():
                output_audio = gr.Audio(type="filepath", label=_("Generated audio"))
                output_image = gr.Image(type="filepath", label=_("Spectrogram"))

        def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing):
            print("\n", text)
            return create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing)
        
        generate_button.click(
            gradio_interface_fn,
            inputs=[text, base_width, height, max_font_size, margin, letter_spacing],
            outputs=[output_audio, output_image]
        )

    with gr.Tab(_("Image to Spectrogram")):
        gr.HTML(_("<center><h2>Oh my god people, learn to read. Go to the “INFO” tab, it says what this interface is and what it is for, don't be idiots.</h2></center>"))
        with gr.Group():
            with gr.Row(variant='panel'):
                upload_image = gr.Image(type="filepath", label=_("Upload image"))
                convert_button = gr.Button(_("Convert to audio"))
            
            with gr.Column(variant='panel'):
                output_audio_from_image = gr.Audio(type="filepath", label=_("Generated audio"))

            def gradio_image_to_audio_fn(upload_image):
                return image_to_spectrogram_audio(upload_image)
            
            convert_button.click(
                gradio_image_to_audio_fn,
                inputs=[upload_image],
                outputs=[output_audio_from_image]
            )

    with gr.Tab(_("Audio Spectrogram")):
        with gr.Group():
            with gr.Row(variant='panel'):
                upload_audio = gr.Audio(type="filepath", label=_("Upload audio"), scale=3)
                decode_button = gr.Button(_("Show spectrogram"), scale=2)
            
            with gr.Column(variant='panel'):
                decoded_image = gr.Image(type="filepath", label=_("Audio Spectrogram"))

            def gradio_decode_fn(upload_audio):
                return display_audio_spectrogram(upload_audio)
            
            decode_button.click(
                gradio_decode_fn,
                inputs=[upload_audio],
                outputs=[decoded_image]
            )

iface.launch(share=True, debug=True)