Spaces:
Sleeping
Sleeping
import gradio as gr | |
from diffusers import DiffusionPipeline | |
# Initialize the pipeline variable globally | |
pipeline = None | |
# Load the pipeline and LoRA weights | |
def load_cust(modelsyu): | |
pipeline = DiffusionPipeline.from_pretrained(modelsyu) | |
output_result = pipeline() | |
return output_result | |
def generate_image(prompt, negative_prompt): | |
global pipeline | |
# Generate the image with the provided prompts | |
if pipeline is None: | |
return "Pipeline not loaded. Please load the models first." | |
image = pipeline(prompt, negative_prompt=negative_prompt).images[0] | |
return image | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Text to Image Generation Custom models Demo") | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here") | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter your negative prompt here") | |
submit_button = gr.Button("Generate Image") | |
with gr.Accordion('Load your custom models first'): | |
basem = gr.Textbox(label="Your Lora model") | |
exports = gr.Button("Load your models") | |
outputid = gr.Textbox(label="output", interactive=False) | |
exports.click(load_cust, inputs=[basem], outputs=[outputid]) | |
output_image = gr.Image(label="Generated Image") | |
submit_button.click(generate_image, inputs=[prompt, negative_prompt], outputs=output_image) | |
# Launch the demo | |
demo.launch() | |