adrien.aribaut-gaudin
commited on
Commit
•
3ca15d8
1
Parent(s):
f343031
feat: requirement part fonctionnal
Browse files- src/control/controller.py +43 -8
- src/llm/llm_tools.py +15 -1
- src/tools/excel_tools.py +2 -2
- src/view/view.py +2 -3
src/control/controller.py
CHANGED
@@ -7,15 +7,18 @@ import random
|
|
7 |
import datetime
|
8 |
import string
|
9 |
import docx
|
|
|
|
|
10 |
from src.tools.doc_tools import get_title
|
11 |
from src.domain.doc import Doc
|
12 |
from src.domain.wikidoc import WikiPage
|
13 |
from src.view.log_msg import create_msg_from
|
14 |
import src.tools.semantic_db as semantic_db
|
15 |
from src.tools.wiki import Wiki
|
|
|
16 |
from src.llm.llm_tools import get_wikilist, get_public_paragraph, get_private_paragraph
|
17 |
from src.tools.semantic_db import add_texts_to_collection, query_collection
|
18 |
-
from src.tools.excel_tools import
|
19 |
import gradio as gr
|
20 |
from src.retriever.retriever import Retriever
|
21 |
|
@@ -290,20 +293,52 @@ class Controller:
|
|
290 |
"""
|
291 |
Retriever(doc=doc, collection=collection)
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
def generate_response_to_requirements(self):
|
294 |
-
|
295 |
-
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
excel_name = self.input_csv
|
298 |
if '/' in excel_name:
|
299 |
excel_name = excel_name.split('/')[-1]
|
300 |
elif '\\' in excel_name:
|
301 |
excel_name = excel_name.split('\\')[-1]
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
305 |
|
306 |
|
307 |
def get_requirements_from_csv(self):
|
308 |
-
excel_content =
|
309 |
return excel_content
|
|
|
7 |
import datetime
|
8 |
import string
|
9 |
import docx
|
10 |
+
import pandas as pd
|
11 |
+
from src.domain.block import Block
|
12 |
from src.tools.doc_tools import get_title
|
13 |
from src.domain.doc import Doc
|
14 |
from src.domain.wikidoc import WikiPage
|
15 |
from src.view.log_msg import create_msg_from
|
16 |
import src.tools.semantic_db as semantic_db
|
17 |
from src.tools.wiki import Wiki
|
18 |
+
from src.llm.llm_tools import generate_response_to_exigence
|
19 |
from src.llm.llm_tools import get_wikilist, get_public_paragraph, get_private_paragraph
|
20 |
from src.tools.semantic_db import add_texts_to_collection, query_collection
|
21 |
+
from src.tools.excel_tools import excel_to_dict
|
22 |
import gradio as gr
|
23 |
from src.retriever.retriever import Retriever
|
24 |
|
|
|
293 |
"""
|
294 |
Retriever(doc=doc, collection=collection)
|
295 |
|
296 |
+
|
297 |
+
@staticmethod
|
298 |
+
def _select_best_sources(sources: [Block], delta_1_2=0.15, delta_1_n=0.3, absolute=1.2, alpha=0.9) -> [Block]:
|
299 |
+
"""
|
300 |
+
Select the best sources: not far from the very best, not far from the last selected, and not too bad per se
|
301 |
+
"""
|
302 |
+
best_sources = []
|
303 |
+
for idx, s in enumerate(sources):
|
304 |
+
if idx == 0 \
|
305 |
+
or (s.distance - sources[idx - 1].distance < delta_1_2
|
306 |
+
and s.distance - sources[0].distance < delta_1_n) \
|
307 |
+
or s.distance < absolute:
|
308 |
+
best_sources.append(s)
|
309 |
+
delta_1_2 *= alpha
|
310 |
+
delta_1_n *= alpha
|
311 |
+
absolute *= alpha
|
312 |
+
else:
|
313 |
+
break
|
314 |
+
return best_sources
|
315 |
+
|
316 |
def generate_response_to_requirements(self):
|
317 |
+
dict_of_excel_content = self.get_requirements_from_csv()
|
318 |
+
for exigence in dict_of_excel_content:
|
319 |
+
blocks_sources = self.retriever.similarity_search(queries = exigence["Exigence"])
|
320 |
+
best_sources = self._select_best_sources(blocks_sources)
|
321 |
+
sources_contents = [f"Paragraph title : {s.title}\n-----\n{s.content}" if s.title else f"Paragraph {s.index}\n-----\n{s.content}" for s in best_sources]
|
322 |
+
context = '\n'.join(sources_contents)
|
323 |
+
i = 1
|
324 |
+
while (len(context) > 15000) and i < len(sources_contents):
|
325 |
+
context = "\n".join(sources_contents[:-i])
|
326 |
+
i += 1
|
327 |
+
reponse_exigence = generate_response_to_exigence(exigence = exigence["Exigence"], titre_exigence = exigence["Titre"], context = context)
|
328 |
+
dict_of_excel_content[dict_of_excel_content.index(exigence)]["Conformité"] = reponse_exigence
|
329 |
+
dict_of_excel_content[dict_of_excel_content.index(exigence)]["Document"] = best_sources[0].doc
|
330 |
+
dict_of_excel_content[dict_of_excel_content.index(exigence)]["Paragraphes"] = "; ".join([block.index for block in best_sources])
|
331 |
excel_name = self.input_csv
|
332 |
if '/' in excel_name:
|
333 |
excel_name = excel_name.split('/')[-1]
|
334 |
elif '\\' in excel_name:
|
335 |
excel_name = excel_name.split('\\')[-1]
|
336 |
+
|
337 |
+
df = pd.DataFrame(data=dict_of_excel_content)
|
338 |
+
df.to_excel(f"{self.excel_doc_path}/{excel_name}", index=False)
|
339 |
+
return f"{self.excel_doc_path}/{excel_name}"
|
340 |
|
341 |
|
342 |
def get_requirements_from_csv(self):
|
343 |
+
excel_content = excel_to_dict(self.input_csv)
|
344 |
return excel_content
|
src/llm/llm_tools.py
CHANGED
@@ -11,6 +11,7 @@ import wikipedia
|
|
11 |
from langchain.text_splitter import CharacterTextSplitter
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
from langchain.chains import LLMChain
|
|
|
14 |
from src.llm.llms import openai_llm
|
15 |
from src.tools.wiki import Wiki
|
16 |
|
@@ -334,4 +335,17 @@ def summarize_paragraph_v2(prompt : str, title_doc : str = '', title_para : str
|
|
334 |
print("****************")
|
335 |
print(res)
|
336 |
print("----")
|
337 |
-
return str(res).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from langchain.text_splitter import CharacterTextSplitter
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
from langchain.chains import LLMChain
|
14 |
+
from src.domain.block import Block
|
15 |
from src.llm.llms import openai_llm
|
16 |
from src.tools.wiki import Wiki
|
17 |
|
|
|
335 |
print("****************")
|
336 |
print(res)
|
337 |
print("----")
|
338 |
+
return str(res).strip()
|
339 |
+
|
340 |
+
def generate_response_to_exigence(exigence : str, titre_exigence : str, content : str):
|
341 |
+
"""
|
342 |
+
Generates a response to an exigence depending on the context of the exigence and the blocks of the document.
|
343 |
+
"""
|
344 |
+
task = (f"Your task consists in generating a response to a requirement in a tender for Orange, a telecommunication operator."
|
345 |
+
f"The requirement dealing with {titre_exigence} is expressed below between triple backquotes:"
|
346 |
+
f"```{exigence}```"
|
347 |
+
f"Your answer should be precise, consistent and as concise as possible with no politeness formulas and strictly be based on the following text delimited by triple backquotes : ```{content}```"
|
348 |
+
)
|
349 |
+
llm = openai_llm
|
350 |
+
generation = llm.invoke(task)
|
351 |
+
return generation
|
src/tools/excel_tools.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import pandas as pd
|
2 |
|
3 |
-
def
|
4 |
df = pd.read_excel(file_path)
|
5 |
-
return df.
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
+
def excel_to_dict(file_path):
|
4 |
df = pd.read_excel(file_path)
|
5 |
+
return df.to_dict(orient='records')
|
src/view/view.py
CHANGED
@@ -192,7 +192,7 @@ def run(config: Dict, controller: Controller):
|
|
192 |
input_csv_comp.upload(input_csv_fn,
|
193 |
inputs=[input_csv_comp],
|
194 |
outputs=[verif_btn],
|
195 |
-
)
|
196 |
|
197 |
def input_csv_clear_fn():
|
198 |
controller.clear_input_csv()
|
@@ -217,8 +217,7 @@ def run(config: Dict, controller: Controller):
|
|
217 |
|
218 |
verif_btn.click(generate_requirements_excel,
|
219 |
inputs=[],
|
220 |
-
outputs=[output_csv_comp],
|
221 |
-
)
|
222 |
|
223 |
def input_files_upload_fn(input_files_):
|
224 |
for files in input_files_:
|
|
|
192 |
input_csv_comp.upload(input_csv_fn,
|
193 |
inputs=[input_csv_comp],
|
194 |
outputs=[verif_btn],
|
195 |
+
show_progress="full")
|
196 |
|
197 |
def input_csv_clear_fn():
|
198 |
controller.clear_input_csv()
|
|
|
217 |
|
218 |
verif_btn.click(generate_requirements_excel,
|
219 |
inputs=[],
|
220 |
+
outputs=[output_csv_comp],show_progress="full")
|
|
|
221 |
|
222 |
def input_files_upload_fn(input_files_):
|
223 |
for files in input_files_:
|