|
import cv2 |
|
import numpy as np |
|
import random |
|
from utils.box_utils import matrix_iof |
|
|
|
|
|
def _crop(image, boxes, labels, landm, img_dim): |
|
height, width, _ = image.shape |
|
pad_image_flag = True |
|
|
|
for _ in range(250): |
|
""" |
|
if random.uniform(0, 1) <= 0.2: |
|
scale = 1.0 |
|
else: |
|
scale = random.uniform(0.3, 1.0) |
|
""" |
|
PRE_SCALES = [0.3, 0.45, 0.6, 0.8, 1.0] |
|
scale = random.choice(PRE_SCALES) |
|
short_side = min(width, height) |
|
w = int(scale * short_side) |
|
h = w |
|
|
|
if width == w: |
|
l = 0 |
|
else: |
|
l = random.randrange(width - w) |
|
if height == h: |
|
t = 0 |
|
else: |
|
t = random.randrange(height - h) |
|
roi = np.array((l, t, l + w, t + h)) |
|
|
|
value = matrix_iof(boxes, roi[np.newaxis]) |
|
flag = (value >= 1) |
|
if not flag.any(): |
|
continue |
|
|
|
centers = (boxes[:, :2] + boxes[:, 2:]) / 2 |
|
mask_a = np.logical_and(roi[:2] < centers, centers < roi[2:]).all(axis=1) |
|
boxes_t = boxes[mask_a].copy() |
|
labels_t = labels[mask_a].copy() |
|
landms_t = landm[mask_a].copy() |
|
landms_t = landms_t.reshape([-1, 5, 2]) |
|
|
|
if boxes_t.shape[0] == 0: |
|
continue |
|
|
|
image_t = image[roi[1]:roi[3], roi[0]:roi[2]] |
|
|
|
boxes_t[:, :2] = np.maximum(boxes_t[:, :2], roi[:2]) |
|
boxes_t[:, :2] -= roi[:2] |
|
boxes_t[:, 2:] = np.minimum(boxes_t[:, 2:], roi[2:]) |
|
boxes_t[:, 2:] -= roi[:2] |
|
|
|
|
|
landms_t[:, :, :2] = landms_t[:, :, :2] - roi[:2] |
|
landms_t[:, :, :2] = np.maximum(landms_t[:, :, :2], np.array([0, 0])) |
|
landms_t[:, :, :2] = np.minimum(landms_t[:, :, :2], roi[2:] - roi[:2]) |
|
landms_t = landms_t.reshape([-1, 10]) |
|
|
|
|
|
|
|
b_w_t = (boxes_t[:, 2] - boxes_t[:, 0] + 1) / w * img_dim |
|
b_h_t = (boxes_t[:, 3] - boxes_t[:, 1] + 1) / h * img_dim |
|
mask_b = np.minimum(b_w_t, b_h_t) > 0.0 |
|
boxes_t = boxes_t[mask_b] |
|
labels_t = labels_t[mask_b] |
|
landms_t = landms_t[mask_b] |
|
|
|
if boxes_t.shape[0] == 0: |
|
continue |
|
|
|
pad_image_flag = False |
|
|
|
return image_t, boxes_t, labels_t, landms_t, pad_image_flag |
|
return image, boxes, labels, landm, pad_image_flag |
|
|
|
|
|
def _distort(image): |
|
|
|
def _convert(image, alpha=1, beta=0): |
|
tmp = image.astype(float) * alpha + beta |
|
tmp[tmp < 0] = 0 |
|
tmp[tmp > 255] = 255 |
|
image[:] = tmp |
|
|
|
image = image.copy() |
|
|
|
if random.randrange(2): |
|
|
|
|
|
if random.randrange(2): |
|
_convert(image, beta=random.uniform(-32, 32)) |
|
|
|
|
|
if random.randrange(2): |
|
_convert(image, alpha=random.uniform(0.5, 1.5)) |
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) |
|
|
|
|
|
if random.randrange(2): |
|
_convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5)) |
|
|
|
|
|
if random.randrange(2): |
|
tmp = image[:, :, 0].astype(int) + random.randint(-18, 18) |
|
tmp %= 180 |
|
image[:, :, 0] = tmp |
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) |
|
|
|
else: |
|
|
|
|
|
if random.randrange(2): |
|
_convert(image, beta=random.uniform(-32, 32)) |
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) |
|
|
|
|
|
if random.randrange(2): |
|
_convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5)) |
|
|
|
|
|
if random.randrange(2): |
|
tmp = image[:, :, 0].astype(int) + random.randint(-18, 18) |
|
tmp %= 180 |
|
image[:, :, 0] = tmp |
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) |
|
|
|
|
|
if random.randrange(2): |
|
_convert(image, alpha=random.uniform(0.5, 1.5)) |
|
|
|
return image |
|
|
|
|
|
def _expand(image, boxes, fill, p): |
|
if random.randrange(2): |
|
return image, boxes |
|
|
|
height, width, depth = image.shape |
|
|
|
scale = random.uniform(1, p) |
|
w = int(scale * width) |
|
h = int(scale * height) |
|
|
|
left = random.randint(0, w - width) |
|
top = random.randint(0, h - height) |
|
|
|
boxes_t = boxes.copy() |
|
boxes_t[:, :2] += (left, top) |
|
boxes_t[:, 2:] += (left, top) |
|
expand_image = np.empty( |
|
(h, w, depth), |
|
dtype=image.dtype) |
|
expand_image[:, :] = fill |
|
expand_image[top:top + height, left:left + width] = image |
|
image = expand_image |
|
|
|
return image, boxes_t |
|
|
|
|
|
def _mirror(image, boxes, landms): |
|
_, width, _ = image.shape |
|
if random.randrange(2): |
|
image = image[:, ::-1] |
|
boxes = boxes.copy() |
|
boxes[:, 0::2] = width - boxes[:, 2::-2] |
|
|
|
|
|
landms = landms.copy() |
|
landms = landms.reshape([-1, 5, 2]) |
|
landms[:, :, 0] = width - landms[:, :, 0] |
|
tmp = landms[:, 1, :].copy() |
|
landms[:, 1, :] = landms[:, 0, :] |
|
landms[:, 0, :] = tmp |
|
tmp1 = landms[:, 4, :].copy() |
|
landms[:, 4, :] = landms[:, 3, :] |
|
landms[:, 3, :] = tmp1 |
|
landms = landms.reshape([-1, 10]) |
|
|
|
return image, boxes, landms |
|
|
|
|
|
def _pad_to_square(image, rgb_mean, pad_image_flag): |
|
if not pad_image_flag: |
|
return image |
|
height, width, _ = image.shape |
|
long_side = max(width, height) |
|
image_t = np.empty((long_side, long_side, 3), dtype=image.dtype) |
|
image_t[:, :] = rgb_mean |
|
image_t[0:0 + height, 0:0 + width] = image |
|
return image_t |
|
|
|
|
|
def _resize_subtract_mean(image, insize, rgb_mean): |
|
interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_NEAREST, cv2.INTER_LANCZOS4] |
|
interp_method = interp_methods[random.randrange(5)] |
|
image = cv2.resize(image, (insize, insize), interpolation=interp_method) |
|
image = image.astype(np.float32) |
|
image -= rgb_mean |
|
return image.transpose(2, 0, 1) |
|
|
|
|
|
class preproc(object): |
|
|
|
def __init__(self, img_dim, rgb_means): |
|
self.img_dim = img_dim |
|
self.rgb_means = rgb_means |
|
|
|
def __call__(self, image, targets): |
|
assert targets.shape[0] > 0, "this image does not have gt" |
|
|
|
boxes = targets[:, :4].copy() |
|
labels = targets[:, -1].copy() |
|
landm = targets[:, 4:-1].copy() |
|
|
|
image_t, boxes_t, labels_t, landm_t, pad_image_flag = _crop(image, boxes, labels, landm, self.img_dim) |
|
image_t = _distort(image_t) |
|
image_t = _pad_to_square(image_t,self.rgb_means, pad_image_flag) |
|
image_t, boxes_t, landm_t = _mirror(image_t, boxes_t, landm_t) |
|
height, width, _ = image_t.shape |
|
image_t = _resize_subtract_mean(image_t, self.img_dim, self.rgb_means) |
|
boxes_t[:, 0::2] /= width |
|
boxes_t[:, 1::2] /= height |
|
|
|
landm_t[:, 0::2] /= width |
|
landm_t[:, 1::2] /= height |
|
|
|
labels_t = np.expand_dims(labels_t, 1) |
|
targets_t = np.hstack((boxes_t, landm_t, labels_t)) |
|
|
|
return image_t, targets_t |
|
|