|
import time |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.models._utils as _utils |
|
import torchvision.models as models |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
|
|
def conv_bn(inp, oup, stride = 1, leaky = 0): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), |
|
nn.BatchNorm2d(oup), |
|
nn.LeakyReLU(negative_slope=leaky, inplace=True) |
|
) |
|
|
|
def conv_bn_no_relu(inp, oup, stride): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), |
|
nn.BatchNorm2d(oup), |
|
) |
|
|
|
def conv_bn1X1(inp, oup, stride, leaky=0): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), |
|
nn.BatchNorm2d(oup), |
|
nn.LeakyReLU(negative_slope=leaky, inplace=True) |
|
) |
|
|
|
def conv_dw(inp, oup, stride, leaky=0.1): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), |
|
nn.BatchNorm2d(inp), |
|
nn.LeakyReLU(negative_slope= leaky,inplace=True), |
|
|
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(oup), |
|
nn.LeakyReLU(negative_slope= leaky,inplace=True), |
|
) |
|
|
|
class SSH(nn.Module): |
|
def __init__(self, in_channel, out_channel): |
|
super(SSH, self).__init__() |
|
assert out_channel % 4 == 0 |
|
leaky = 0 |
|
if (out_channel <= 64): |
|
leaky = 0.1 |
|
self.conv3X3 = conv_bn_no_relu(in_channel, out_channel//2, stride=1) |
|
|
|
self.conv5X5_1 = conv_bn(in_channel, out_channel//4, stride=1, leaky = leaky) |
|
self.conv5X5_2 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1) |
|
|
|
self.conv7X7_2 = conv_bn(out_channel//4, out_channel//4, stride=1, leaky = leaky) |
|
self.conv7x7_3 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1) |
|
|
|
def forward(self, input): |
|
conv3X3 = self.conv3X3(input) |
|
|
|
conv5X5_1 = self.conv5X5_1(input) |
|
conv5X5 = self.conv5X5_2(conv5X5_1) |
|
|
|
conv7X7_2 = self.conv7X7_2(conv5X5_1) |
|
conv7X7 = self.conv7x7_3(conv7X7_2) |
|
|
|
out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1) |
|
out = F.relu(out) |
|
return out |
|
|
|
class FPN(nn.Module): |
|
def __init__(self,in_channels_list,out_channels): |
|
super(FPN,self).__init__() |
|
leaky = 0 |
|
if (out_channels <= 64): |
|
leaky = 0.1 |
|
self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride = 1, leaky = leaky) |
|
self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride = 1, leaky = leaky) |
|
self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride = 1, leaky = leaky) |
|
|
|
self.merge1 = conv_bn(out_channels, out_channels, leaky = leaky) |
|
self.merge2 = conv_bn(out_channels, out_channels, leaky = leaky) |
|
|
|
def forward(self, input): |
|
|
|
input = list(input.values()) |
|
|
|
output1 = self.output1(input[0]) |
|
output2 = self.output2(input[1]) |
|
output3 = self.output3(input[2]) |
|
|
|
up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode="nearest") |
|
output2 = output2 + up3 |
|
output2 = self.merge2(output2) |
|
|
|
up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode="nearest") |
|
output1 = output1 + up2 |
|
output1 = self.merge1(output1) |
|
|
|
out = [output1, output2, output3] |
|
return out |
|
|
|
|
|
|
|
class MobileNetV1(nn.Module): |
|
def __init__(self): |
|
super(MobileNetV1, self).__init__() |
|
self.stage1 = nn.Sequential( |
|
conv_bn(3, 8, 2, leaky = 0.1), |
|
conv_dw(8, 16, 1), |
|
conv_dw(16, 32, 2), |
|
conv_dw(32, 32, 1), |
|
conv_dw(32, 64, 2), |
|
conv_dw(64, 64, 1), |
|
) |
|
self.stage2 = nn.Sequential( |
|
conv_dw(64, 128, 2), |
|
conv_dw(128, 128, 1), |
|
conv_dw(128, 128, 1), |
|
conv_dw(128, 128, 1), |
|
conv_dw(128, 128, 1), |
|
conv_dw(128, 128, 1), |
|
) |
|
self.stage3 = nn.Sequential( |
|
conv_dw(128, 256, 2), |
|
conv_dw(256, 256, 1), |
|
) |
|
self.avg = nn.AdaptiveAvgPool2d((1,1)) |
|
self.fc = nn.Linear(256, 1000) |
|
|
|
def forward(self, x): |
|
x = self.stage1(x) |
|
x = self.stage2(x) |
|
x = self.stage3(x) |
|
x = self.avg(x) |
|
|
|
x = x.view(-1, 256) |
|
x = self.fc(x) |
|
return x |
|
|
|
|