File size: 71,569 Bytes
01c9658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
from __future__ import annotations

import copy
import getpass
import inspect
import json
import os
import pkgutil
import random
import sys
import time
import warnings
import webbrowser
from abc import abstractmethod
from pathlib import Path
from types import ModuleType
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterator, List, Set, Tuple, Type

import anyio
import requests
from anyio import CapacityLimiter
from typing_extensions import Literal

from gradio import (
    components,
    encryptor,
    external,
    networking,
    queueing,
    routes,
    strings,
    utils,
)
from gradio.context import Context
from gradio.deprecation import check_deprecated_parameters
from gradio.documentation import document, set_documentation_group
from gradio.exceptions import DuplicateBlockError, InvalidApiName
from gradio.helpers import create_tracker, skip, special_args
from gradio.tunneling import CURRENT_TUNNELS
from gradio.utils import (
    TupleNoPrint,
    check_function_inputs_match,
    component_or_layout_class,
    delete_none,
    get_cancel_function,
    get_continuous_fn,
)

set_documentation_group("blocks")


if TYPE_CHECKING:  # Only import for type checking (is False at runtime).
    import comet_ml
    from fastapi.applications import FastAPI

    from gradio.components import Component


class Block:
    def __init__(
        self,
        *,
        render: bool = True,
        elem_id: str | None = None,
        visible: bool = True,
        root_url: str | None = None,  # URL that is prepended to all file paths
        _skip_init_processing: bool = False,  # Used for loading from Spaces
        **kwargs,
    ):
        self._id = Context.id
        Context.id += 1
        self.visible = visible
        self.elem_id = elem_id
        self.root_url = root_url
        self._skip_init_processing = _skip_init_processing
        self._style = {}
        self.parent: BlockContext | None = None

        if render:
            self.render()
        check_deprecated_parameters(self.__class__.__name__, **kwargs)

    def render(self):
        """
        Adds self into appropriate BlockContext
        """
        if Context.root_block is not None and self._id in Context.root_block.blocks:
            raise DuplicateBlockError(
                f"A block with id: {self._id} has already been rendered in the current Blocks."
            )
        if Context.block is not None:
            Context.block.add(self)
        if Context.root_block is not None:
            Context.root_block.blocks[self._id] = self
            if isinstance(self, components.TempFileManager):
                Context.root_block.temp_file_sets.append(self.temp_files)
        return self

    def unrender(self):
        """
        Removes self from BlockContext if it has been rendered (otherwise does nothing).
        Removes self from the layout and collection of blocks, but does not delete any event triggers.
        """
        if Context.block is not None:
            try:
                Context.block.children.remove(self)
            except ValueError:
                pass
        if Context.root_block is not None:
            try:
                del Context.root_block.blocks[self._id]
            except KeyError:
                pass
        return self

    def get_block_name(self) -> str:
        """
        Gets block's class name.

        If it is template component it gets the parent's class name.

        @return: class name
        """
        return (
            self.__class__.__base__.__name__.lower()
            if hasattr(self, "is_template")
            else self.__class__.__name__.lower()
        )

    def get_expected_parent(self) -> Type[BlockContext] | None:
        return None

    def set_event_trigger(
        self,
        event_name: str,
        fn: Callable | None,
        inputs: Component | List[Component] | Set[Component] | None,
        outputs: Component | List[Component] | None,
        preprocess: bool = True,
        postprocess: bool = True,
        scroll_to_output: bool = False,
        show_progress: bool = True,
        api_name: str | None = None,
        js: str | None = None,
        no_target: bool = False,
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        cancels: List[int] | None = None,
        every: float | None = None,
    ) -> Dict[str, Any]:
        """
        Adds an event to the component's dependencies.
        Parameters:
            event_name: event name
            fn: Callable function
            inputs: input list
            outputs: output list
            preprocess: whether to run the preprocess methods of components
            postprocess: whether to run the postprocess methods of components
            scroll_to_output: whether to scroll to output of dependency on trigger
            show_progress: whether to show progress animation while running.
            api_name: Defining this parameter exposes the endpoint in the api docs
            js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components
            no_target: if True, sets "targets" to [], used for Blocks "load" event
            batch: whether this function takes in a batch of inputs
            max_batch_size: the maximum batch size to send to the function
            cancels: a list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
        Returns: None
        """
        # Support for singular parameter
        if isinstance(inputs, set):
            inputs_as_dict = True
            inputs = sorted(inputs, key=lambda x: x._id)
        else:
            inputs_as_dict = False
            if inputs is None:
                inputs = []
            elif not isinstance(inputs, list):
                inputs = [inputs]

        if isinstance(outputs, set):
            outputs = sorted(outputs, key=lambda x: x._id)
        else:
            if outputs is None:
                outputs = []
            elif not isinstance(outputs, list):
                outputs = [outputs]

        if fn is not None and not cancels:
            check_function_inputs_match(fn, inputs, inputs_as_dict)

        if Context.root_block is None:
            raise AttributeError(
                f"{event_name}() and other events can only be called within a Blocks context."
            )
        if every is not None and every <= 0:
            raise ValueError("Parameter every must be positive or None")
        if every and batch:
            raise ValueError(
                f"Cannot run {event_name} event in a batch and every {every} seconds. "
                "Either batch is True or every is non-zero but not both."
            )

        if every and fn:
            fn = get_continuous_fn(fn, every)
        elif every:
            raise ValueError("Cannot set a value for `every` without a `fn`.")

        Context.root_block.fns.append(
            BlockFunction(fn, inputs, outputs, preprocess, postprocess, inputs_as_dict)
        )
        if api_name is not None:
            api_name_ = utils.append_unique_suffix(
                api_name, [dep["api_name"] for dep in Context.root_block.dependencies]
            )
            if not (api_name == api_name_):
                warnings.warn(
                    "api_name {} already exists, using {}".format(api_name, api_name_)
                )
                api_name = api_name_

        dependency = {
            "targets": [self._id] if not no_target else [],
            "trigger": event_name,
            "inputs": [block._id for block in inputs],
            "outputs": [block._id for block in outputs],
            "backend_fn": fn is not None,
            "js": js,
            "queue": False if fn is None else queue,
            "api_name": api_name,
            "scroll_to_output": scroll_to_output,
            "show_progress": show_progress,
            "every": every,
            "batch": batch,
            "max_batch_size": max_batch_size,
            "cancels": cancels or [],
        }
        Context.root_block.dependencies.append(dependency)
        return dependency

    def get_config(self):
        return {
            "visible": self.visible,
            "elem_id": self.elem_id,
            "style": self._style,
            "root_url": self.root_url,
        }

    @staticmethod
    @abstractmethod
    def update(**kwargs) -> Dict:
        return {}

    @classmethod
    def get_specific_update(cls, generic_update: Dict[str, Any]) -> Dict:
        del generic_update["__type__"]
        specific_update = cls.update(**generic_update)
        return specific_update


class BlockContext(Block):
    def __init__(
        self,
        visible: bool = True,
        render: bool = True,
        **kwargs,
    ):
        """
        Parameters:
            visible: If False, this will be hidden but included in the Blocks config file (its visibility can later be updated).
            render: If False, this will not be included in the Blocks config file at all.
        """
        self.children: List[Block] = []
        super().__init__(visible=visible, render=render, **kwargs)

    def __enter__(self):
        self.parent = Context.block
        Context.block = self
        return self

    def add(self, child: Block):
        child.parent = self
        self.children.append(child)

    def fill_expected_parents(self):
        children = []
        pseudo_parent = None
        for child in self.children:
            expected_parent = child.get_expected_parent()
            if not expected_parent or isinstance(self, expected_parent):
                pseudo_parent = None
                children.append(child)
            else:
                if pseudo_parent is not None and isinstance(
                    pseudo_parent, expected_parent
                ):
                    pseudo_parent.children.append(child)
                else:
                    pseudo_parent = expected_parent(render=False)
                    children.append(pseudo_parent)
                    pseudo_parent.children = [child]
                    if Context.root_block:
                        Context.root_block.blocks[pseudo_parent._id] = pseudo_parent
                child.parent = pseudo_parent
        self.children = children

    def __exit__(self, *args):
        if getattr(self, "allow_expected_parents", True):
            self.fill_expected_parents()
        Context.block = self.parent

    def postprocess(self, y):
        """
        Any postprocessing needed to be performed on a block context.
        """
        return y


class BlockFunction:
    def __init__(
        self,
        fn: Callable | None,
        inputs: List[Component],
        outputs: List[Component],
        preprocess: bool,
        postprocess: bool,
        inputs_as_dict: bool,
    ):
        self.fn = fn
        self.inputs = inputs
        self.outputs = outputs
        self.preprocess = preprocess
        self.postprocess = postprocess
        self.total_runtime = 0
        self.total_runs = 0
        self.inputs_as_dict = inputs_as_dict

    def __str__(self):
        return str(
            {
                "fn": getattr(self.fn, "__name__", "fn")
                if self.fn is not None
                else None,
                "preprocess": self.preprocess,
                "postprocess": self.postprocess,
            }
        )

    def __repr__(self):
        return str(self)


class class_or_instancemethod(classmethod):
    def __get__(self, instance, type_):
        descr_get = super().__get__ if instance is None else self.__func__.__get__
        return descr_get(instance, type_)


def postprocess_update_dict(block: Block, update_dict: Dict, postprocess: bool = True):
    """
    Converts a dictionary of updates into a format that can be sent to the frontend.
    E.g. {"__type__": "generic_update", "value": "2", "interactive": False}
    Into -> {"__type__": "update", "value": 2.0, "mode": "static"}

    Parameters:
        block: The Block that is being updated with this update dictionary.
        update_dict: The original update dictionary
        postprocess: Whether to postprocess the "value" key of the update dictionary.
    """
    if update_dict.get("__type__", "") == "generic_update":
        update_dict = block.get_specific_update(update_dict)
    if update_dict.get("value") is components._Keywords.NO_VALUE:
        update_dict.pop("value")
    prediction_value = delete_none(update_dict, skip_value=True)
    if "value" in prediction_value and postprocess:
        assert isinstance(
            block, components.IOComponent
        ), f"Component {block.__class__} does not support value"
        prediction_value["value"] = block.postprocess(prediction_value["value"])
    return prediction_value


def convert_component_dict_to_list(
    outputs_ids: List[int], predictions: Dict
) -> List | Dict:
    """
    Converts a dictionary of component updates into a list of updates in the order of
    the outputs_ids and including every output component. Leaves other types of dictionaries unchanged.
    E.g. {"textbox": "hello", "number": {"__type__": "generic_update", "value": "2"}}
    Into -> ["hello", {"__type__": "generic_update"}, {"__type__": "generic_update", "value": "2"}]
    """
    keys_are_blocks = [isinstance(key, Block) for key in predictions.keys()]
    if all(keys_are_blocks):
        reordered_predictions = [skip() for _ in outputs_ids]
        for component, value in predictions.items():
            if component._id not in outputs_ids:
                raise ValueError(
                    f"Returned component {component} not specified as output of function."
                )
            output_index = outputs_ids.index(component._id)
            reordered_predictions[output_index] = value
        predictions = utils.resolve_singleton(reordered_predictions)
    elif any(keys_are_blocks):
        raise ValueError(
            "Returned dictionary included some keys as Components. Either all keys must be Components to assign Component values, or return a List of values to assign output values in order."
        )
    return predictions


@document("load")
class Blocks(BlockContext):
    """
    Blocks is Gradio's low-level API that allows you to create more custom web
    applications and demos than Interfaces (yet still entirely in Python).


    Compared to the Interface class, Blocks offers more flexibility and control over:
    (1) the layout of components (2) the events that
    trigger the execution of functions (3) data flows (e.g. inputs can trigger outputs,
    which can trigger the next level of outputs). Blocks also offers ways to group
    together related demos such as with tabs.


    The basic usage of Blocks is as follows: create a Blocks object, then use it as a
    context (with the "with" statement), and then define layouts, components, or events
    within the Blocks context. Finally, call the launch() method to launch the demo.

    Example:
        import gradio as gr
        def update(name):
            return f"Welcome to Gradio, {name}!"

        with gr.Blocks() as demo:
            gr.Markdown("Start typing below and then click **Run** to see the output.")
            with gr.Row():
                inp = gr.Textbox(placeholder="What is your name?")
                out = gr.Textbox()
            btn = gr.Button("Run")
            btn.click(fn=update, inputs=inp, outputs=out)

        demo.launch()
    Demos: blocks_hello, blocks_flipper, blocks_speech_text_sentiment, generate_english_german, sound_alert
    Guides: blocks_and_event_listeners, controlling_layout, state_in_blocks, custom_CSS_and_JS, custom_interpretations_with_blocks, using_blocks_like_functions
    """

    def __init__(
        self,
        theme: str = "default",
        analytics_enabled: bool | None = None,
        mode: str = "blocks",
        title: str = "Gradio",
        css: str | None = None,
        **kwargs,
    ):
        """
        Parameters:
            theme: which theme to use - right now, only "default" is supported.
            analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
            mode: a human-friendly name for the kind of Blocks or Interface being created.
            title: The tab title to display when this is opened in a browser window.
            css: custom css or path to custom css file to apply to entire Blocks
        """
        # Cleanup shared parameters with Interface #TODO: is this part still necessary after Interface with Blocks?
        self.limiter = None
        self.save_to = None
        self.theme = theme
        self.encrypt = False
        self.share = False
        self.enable_queue = None
        self.max_threads = 40
        self.show_error = True
        if css is not None and Path(css).exists():
            with open(css) as css_file:
                self.css = css_file.read()
        else:
            self.css = css

        # For analytics_enabled and allow_flagging: (1) first check for
        # parameter, (2) check for env variable, (3) default to True/"manual"
        self.analytics_enabled = (
            analytics_enabled
            if analytics_enabled is not None
            else os.getenv("GRADIO_ANALYTICS_ENABLED", "True") == "True"
        )

        super().__init__(render=False, **kwargs)
        self.blocks: Dict[int, Block] = {}
        self.fns: List[BlockFunction] = []
        self.dependencies = []
        self.mode = mode

        self.is_running = False
        self.local_url = None
        self.share_url = None
        self.width = None
        self.height = None
        self.api_open = True

        self.ip_address = ""
        self.is_space = True if os.getenv("SYSTEM") == "spaces" else False
        self.favicon_path = None
        self.auth = None
        self.dev_mode = True
        self.app_id = random.getrandbits(64)
        self.temp_file_sets = []
        self.title = title
        self.show_api = True

        # Only used when an Interface is loaded from a config
        self.predict = None
        self.input_components = None
        self.output_components = None
        self.__name__ = None
        self.api_mode = None

        if self.analytics_enabled:
            self.ip_address = utils.get_local_ip_address()
            data = {
                "mode": self.mode,
                "ip_address": self.ip_address,
                "custom_css": self.css is not None,
                "theme": self.theme,
                "version": (pkgutil.get_data(__name__, "version.txt") or b"")
                .decode("ascii")
                .strip(),
            }
            utils.initiated_analytics(data)

    @classmethod
    def from_config(
        cls, config: dict, fns: List[Callable], root_url: str | None = None
    ) -> Blocks:
        """
        Factory method that creates a Blocks from a config and list of functions.

        Parameters:
        config: a dictionary containing the configuration of the Blocks.
        fns: a list of functions that are used in the Blocks. Must be in the same order as the dependencies in the config.
        root_url: an optional root url to use for the components in the Blocks. Allows serving files from an external URL.
        """
        config = copy.deepcopy(config)
        components_config = config["components"]
        original_mapping: Dict[int, Block] = {}

        def get_block_instance(id: int) -> Block:
            for block_config in components_config:
                if block_config["id"] == id:
                    break
            else:
                raise ValueError("Cannot find block with id {}".format(id))
            cls = component_or_layout_class(block_config["type"])
            block_config["props"].pop("type", None)
            block_config["props"].pop("name", None)
            style = block_config["props"].pop("style", None)
            if block_config["props"].get("root_url") is None and root_url:
                block_config["props"]["root_url"] = root_url + "/"
            # Any component has already processed its initial value, so we skip that step here
            block = cls(**block_config["props"], _skip_init_processing=True)
            if style and isinstance(block, components.IOComponent):
                block.style(**style)
            return block

        def iterate_over_children(children_list):
            for child_config in children_list:
                id = child_config["id"]
                block = get_block_instance(id)

                original_mapping[id] = block

                children = child_config.get("children")
                if children is not None:
                    assert isinstance(
                        block, BlockContext
                    ), f"Invalid config, Block with id {id} has children but is not a BlockContext."
                    with block:
                        iterate_over_children(children)

        with Blocks(theme=config["theme"], css=config["theme"]) as blocks:
            # ID 0 should be the root Blocks component
            original_mapping[0] = Context.root_block or blocks

            iterate_over_children(config["layout"]["children"])

            first_dependency = None

            # add the event triggers
            for dependency, fn in zip(config["dependencies"], fns):
                # We used to add a "fake_event" to the config to cache examples
                # without removing it. This was causing bugs in calling gr.Interface.load
                # We fixed the issue by removing "fake_event" from the config in examples.py
                # but we still need to skip these events when loading the config to support
                # older demos
                if dependency["trigger"] == "fake_event":
                    continue
                targets = dependency.pop("targets")
                trigger = dependency.pop("trigger")
                dependency.pop("backend_fn")
                dependency.pop("documentation", None)
                dependency["inputs"] = [
                    original_mapping[i] for i in dependency["inputs"]
                ]
                dependency["outputs"] = [
                    original_mapping[o] for o in dependency["outputs"]
                ]
                dependency.pop("status_tracker", None)
                dependency["preprocess"] = False
                dependency["postprocess"] = False

                for target in targets:
                    dependency = original_mapping[target].set_event_trigger(
                        event_name=trigger, fn=fn, **dependency
                    )
                    if first_dependency is None:
                        first_dependency = dependency

            # Allows some use of Interface-specific methods with loaded Spaces
            if first_dependency and Context.root_block:
                blocks.predict = [fns[0]]
                blocks.input_components = [
                    Context.root_block.blocks[i] for i in first_dependency["inputs"]
                ]
                blocks.output_components = [
                    Context.root_block.blocks[o] for o in first_dependency["outputs"]
                ]
                blocks.__name__ = "Interface"
                blocks.api_mode = True

        return blocks

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        num_backend_fns = len([d for d in self.dependencies if d["backend_fn"]])
        repr = f"Gradio Blocks instance: {num_backend_fns} backend functions"
        repr += "\n" + "-" * len(repr)
        for d, dependency in enumerate(self.dependencies):
            if dependency["backend_fn"]:
                repr += f"\nfn_index={d}"
                repr += "\n inputs:"
                for input_id in dependency["inputs"]:
                    block = self.blocks[input_id]
                    repr += "\n |-{}".format(str(block))
                repr += "\n outputs:"
                for output_id in dependency["outputs"]:
                    block = self.blocks[output_id]
                    repr += "\n |-{}".format(str(block))
        return repr

    def render(self):
        if Context.root_block is not None:
            if self._id in Context.root_block.blocks:
                raise DuplicateBlockError(
                    f"A block with id: {self._id} has already been rendered in the current Blocks."
                )
            if not set(Context.root_block.blocks).isdisjoint(self.blocks):
                raise DuplicateBlockError(
                    "At least one block in this Blocks has already been rendered."
                )

            Context.root_block.blocks.update(self.blocks)
            Context.root_block.fns.extend(self.fns)
            dependency_offset = len(Context.root_block.dependencies)
            for i, dependency in enumerate(self.dependencies):
                api_name = dependency["api_name"]
                if api_name is not None:
                    api_name_ = utils.append_unique_suffix(
                        api_name,
                        [dep["api_name"] for dep in Context.root_block.dependencies],
                    )
                    if not (api_name == api_name_):
                        warnings.warn(
                            "api_name {} already exists, using {}".format(
                                api_name, api_name_
                            )
                        )
                        dependency["api_name"] = api_name_
                dependency["cancels"] = [
                    c + dependency_offset for c in dependency["cancels"]
                ]
                # Recreate the cancel function so that it has the latest
                # dependency fn indices. This is necessary to properly cancel
                # events in the backend
                if dependency["cancels"]:
                    updated_cancels = [
                        Context.root_block.dependencies[i]
                        for i in dependency["cancels"]
                    ]
                    new_fn = BlockFunction(
                        get_cancel_function(updated_cancels)[0],
                        [],
                        [],
                        False,
                        True,
                        False,
                    )
                    Context.root_block.fns[dependency_offset + i] = new_fn
                Context.root_block.dependencies.append(dependency)
            Context.root_block.temp_file_sets.extend(self.temp_file_sets)

        if Context.block is not None:
            Context.block.children.extend(self.children)
        return self

    def is_callable(self, fn_index: int = 0) -> bool:
        """Checks if a particular Blocks function is callable (i.e. not stateful or a generator)."""
        block_fn = self.fns[fn_index]
        dependency = self.dependencies[fn_index]

        if inspect.isasyncgenfunction(block_fn.fn):
            return False
        if inspect.isgeneratorfunction(block_fn.fn):
            return False
        for input_id in dependency["inputs"]:
            block = self.blocks[input_id]
            if getattr(block, "stateful", False):
                return False
        for output_id in dependency["outputs"]:
            block = self.blocks[output_id]
            if getattr(block, "stateful", False):
                return False

        return True

    def __call__(self, *inputs, fn_index: int = 0, api_name: str | None = None):
        """
        Allows Blocks objects to be called as functions. Supply the parameters to the
        function as positional arguments. To choose which function to call, use the
        fn_index parameter, which must be a keyword argument.

        Parameters:
        *inputs: the parameters to pass to the function
        fn_index: the index of the function to call (defaults to 0, which for Interfaces, is the default prediction function)
        api_name: The api_name of the dependency to call. Will take precedence over fn_index.
        """
        if api_name is not None:
            inferred_fn_index = next(
                (
                    i
                    for i, d in enumerate(self.dependencies)
                    if d.get("api_name") == api_name
                ),
                None,
            )
            if inferred_fn_index is None:
                raise InvalidApiName(f"Cannot find a function with api_name {api_name}")
            fn_index = inferred_fn_index
        if not (self.is_callable(fn_index)):
            raise ValueError(
                "This function is not callable because it is either stateful or is a generator. Please use the .launch() method instead to create an interactive user interface."
            )

        inputs = list(inputs)
        processed_inputs = self.serialize_data(fn_index, inputs)
        batch = self.dependencies[fn_index]["batch"]
        if batch:
            processed_inputs = [[inp] for inp in processed_inputs]

        outputs = utils.synchronize_async(
            self.process_api,
            fn_index=fn_index,
            inputs=processed_inputs,
            request=None,
            state={},
        )
        outputs = outputs["data"]

        if batch:
            outputs = [out[0] for out in outputs]

        processed_outputs = self.deserialize_data(fn_index, outputs)
        processed_outputs = utils.resolve_singleton(processed_outputs)

        return processed_outputs

    async def call_function(
        self,
        fn_index: int,
        processed_input: List[Any],
        iterator: Iterator[Any] | None = None,
        requests: routes.Request | List[routes.Request] | None = None,
        event_id: str | None = None,
    ):
        """
        Calls function with given index and preprocessed input, and measures process time.
        Parameters:
            fn_index: index of function to call
            processed_input: preprocessed input to pass to function
            iterator: iterator to use if function is a generator
            requests: requests to pass to function
            event_id: id of event in queue
        """
        block_fn = self.fns[fn_index]
        assert block_fn.fn, f"function with index {fn_index} not defined."
        is_generating = False

        if block_fn.inputs_as_dict:
            processed_input = [
                {
                    input_component: data
                    for input_component, data in zip(block_fn.inputs, processed_input)
                }
            ]

        if isinstance(requests, list):
            request = requests[0]
        else:
            request = requests
        processed_input, progress_index = special_args(
            block_fn.fn,
            processed_input,
            request,
        )
        progress_tracker = (
            processed_input[progress_index] if progress_index is not None else None
        )

        start = time.time()

        if iterator is None:  # If not a generator function that has already run
            if progress_tracker is not None and progress_index is not None:
                progress_tracker, fn = create_tracker(
                    self, event_id, block_fn.fn, progress_tracker.track_tqdm
                )
                processed_input[progress_index] = progress_tracker
            else:
                fn = block_fn.fn

            if inspect.iscoroutinefunction(fn):
                prediction = await fn(*processed_input)
            else:
                prediction = await anyio.to_thread.run_sync(
                    fn, *processed_input, limiter=self.limiter
                )
        else:
            prediction = None

        if inspect.isasyncgenfunction(block_fn.fn):
            raise ValueError("Gradio does not support async generators.")
        if inspect.isgeneratorfunction(block_fn.fn):
            if not self.enable_queue:
                raise ValueError("Need to enable queue to use generators.")
            try:
                if iterator is None:
                    iterator = prediction
                prediction = await anyio.to_thread.run_sync(
                    utils.async_iteration, iterator, limiter=self.limiter
                )
                is_generating = True
            except StopAsyncIteration:
                n_outputs = len(self.dependencies[fn_index].get("outputs"))
                prediction = (
                    components._Keywords.FINISHED_ITERATING
                    if n_outputs == 1
                    else (components._Keywords.FINISHED_ITERATING,) * n_outputs
                )
                iterator = None

        duration = time.time() - start

        return {
            "prediction": prediction,
            "duration": duration,
            "is_generating": is_generating,
            "iterator": iterator,
        }

    def serialize_data(self, fn_index: int, inputs: List[Any]) -> List[Any]:
        dependency = self.dependencies[fn_index]
        processed_input = []

        for i, input_id in enumerate(dependency["inputs"]):
            block = self.blocks[input_id]
            assert isinstance(
                block, components.IOComponent
            ), f"{block.__class__} Component with id {input_id} not a valid input component."
            serialized_input = block.serialize(inputs[i])
            processed_input.append(serialized_input)

        return processed_input

    def deserialize_data(self, fn_index: int, outputs: List[Any]) -> List[Any]:
        dependency = self.dependencies[fn_index]
        predictions = []

        for o, output_id in enumerate(dependency["outputs"]):
            block = self.blocks[output_id]
            assert isinstance(
                block, components.IOComponent
            ), f"{block.__class__} Component with id {output_id} not a valid output component."
            deserialized = block.deserialize(outputs[o])
            predictions.append(deserialized)

        return predictions

    def preprocess_data(self, fn_index: int, inputs: List[Any], state: Dict[int, Any]):
        block_fn = self.fns[fn_index]
        dependency = self.dependencies[fn_index]

        if block_fn.preprocess:
            processed_input = []
            for i, input_id in enumerate(dependency["inputs"]):
                block = self.blocks[input_id]
                assert isinstance(
                    block, components.Component
                ), f"{block.__class__} Component with id {input_id} not a valid input component."
                if getattr(block, "stateful", False):
                    processed_input.append(state.get(input_id))
                else:
                    processed_input.append(block.preprocess(inputs[i]))
        else:
            processed_input = inputs
        return processed_input

    def postprocess_data(
        self, fn_index: int, predictions: List | Dict, state: Dict[int, Any]
    ):
        block_fn = self.fns[fn_index]
        dependency = self.dependencies[fn_index]
        batch = dependency["batch"]

        if type(predictions) is dict and len(predictions) > 0:
            predictions = convert_component_dict_to_list(
                dependency["outputs"], predictions
            )

        if len(dependency["outputs"]) == 1 and not (batch):
            predictions = [
                predictions,
            ]

        output = []
        for i, output_id in enumerate(dependency["outputs"]):
            if predictions[i] is components._Keywords.FINISHED_ITERATING:
                output.append(None)
                continue
            block = self.blocks[output_id]
            if getattr(block, "stateful", False):
                if not utils.is_update(predictions[i]):
                    state[output_id] = predictions[i]
                output.append(None)
            else:
                prediction_value = predictions[i]
                if utils.is_update(prediction_value):
                    assert isinstance(prediction_value, dict)
                    prediction_value = postprocess_update_dict(
                        block=block,
                        update_dict=prediction_value,
                        postprocess=block_fn.postprocess,
                    )
                elif block_fn.postprocess:
                    assert isinstance(
                        block, components.Component
                    ), f"{block.__class__} Component with id {output_id} not a valid output component."
                    prediction_value = block.postprocess(prediction_value)
                output.append(prediction_value)
        return output

    async def process_api(
        self,
        fn_index: int,
        inputs: List[Any],
        state: Dict[int, Any],
        request: routes.Request | List[routes.Request] | None = None,
        iterators: Dict[int, Any] | None = None,
        event_id: str | None = None,
    ) -> Dict[str, Any]:
        """
        Processes API calls from the frontend. First preprocesses the data,
        then runs the relevant function, then postprocesses the output.
        Parameters:
            fn_index: Index of function to run.
            inputs: input data received from the frontend
            username: name of user if authentication is set up (not used)
            state: data stored from stateful components for session (key is input block id)
            iterators: the in-progress iterators for each generator function (key is function index)
        Returns: None
        """
        block_fn = self.fns[fn_index]
        batch = self.dependencies[fn_index]["batch"]

        if batch:
            max_batch_size = self.dependencies[fn_index]["max_batch_size"]
            batch_sizes = [len(inp) for inp in inputs]
            batch_size = batch_sizes[0]
            if inspect.isasyncgenfunction(block_fn.fn) or inspect.isgeneratorfunction(
                block_fn.fn
            ):
                raise ValueError("Gradio does not support generators in batch mode.")
            if not all(x == batch_size for x in batch_sizes):
                raise ValueError(
                    f"All inputs to a batch function must have the same length but instead have sizes: {batch_sizes}."
                )
            if batch_size > max_batch_size:
                raise ValueError(
                    f"Batch size ({batch_size}) exceeds the max_batch_size for this function ({max_batch_size})"
                )

            inputs = [
                self.preprocess_data(fn_index, list(i), state) for i in zip(*inputs)
            ]
            result = await self.call_function(
                fn_index, list(zip(*inputs)), None, request
            )
            preds = result["prediction"]
            data = [
                self.postprocess_data(fn_index, list(o), state) for o in zip(*preds)
            ]
            data = list(zip(*data))
            is_generating, iterator = None, None
        else:
            inputs = self.preprocess_data(fn_index, inputs, state)
            iterator = iterators.get(fn_index, None) if iterators else None
            result = await self.call_function(
                fn_index, inputs, iterator, request, event_id
            )
            data = self.postprocess_data(fn_index, result["prediction"], state)
            is_generating, iterator = result["is_generating"], result["iterator"]

        block_fn.total_runtime += result["duration"]
        block_fn.total_runs += 1

        return {
            "data": data,
            "is_generating": is_generating,
            "iterator": iterator,
            "duration": result["duration"],
            "average_duration": block_fn.total_runtime / block_fn.total_runs,
        }

    async def create_limiter(self):
        self.limiter = (
            None
            if self.max_threads == 40
            else CapacityLimiter(total_tokens=self.max_threads)
        )

    def get_config(self):
        return {"type": "column"}

    def get_config_file(self):
        config = {
            "version": routes.VERSION,
            "mode": self.mode,
            "dev_mode": self.dev_mode,
            "components": [],
            "theme": self.theme,
            "css": self.css,
            "title": self.title or "Gradio",
            "is_space": self.is_space,
            "enable_queue": getattr(self, "enable_queue", False),  # launch attributes
            "show_error": getattr(self, "show_error", False),
            "show_api": self.show_api,
            "is_colab": utils.colab_check(),
        }

        def getLayout(block):
            if not isinstance(block, BlockContext):
                return {"id": block._id}
            children_layout = []
            for child in block.children:
                children_layout.append(getLayout(child))
            return {"id": block._id, "children": children_layout}

        config["layout"] = getLayout(self)

        for _id, block in self.blocks.items():
            config["components"].append(
                {
                    "id": _id,
                    "type": (block.get_block_name()),
                    "props": utils.delete_none(block.get_config())
                    if hasattr(block, "get_config")
                    else {},
                }
            )
        config["dependencies"] = self.dependencies
        return config

    def __enter__(self):
        if Context.block is None:
            Context.root_block = self
        self.parent = Context.block
        Context.block = self
        return self

    def __exit__(self, *args):
        super().fill_expected_parents()
        Context.block = self.parent
        # Configure the load events before root_block is reset
        self.attach_load_events()
        if self.parent is None:
            Context.root_block = None
        else:
            self.parent.children.extend(self.children)
        self.config = self.get_config_file()
        self.app = routes.App.create_app(self)

    @class_or_instancemethod
    def load(
        self_or_cls,
        fn: Callable | None = None,
        inputs: List[Component] | None = None,
        outputs: List[Component] | None = None,
        api_name: str | None = None,
        scroll_to_output: bool = False,
        show_progress: bool = True,
        queue=None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        every: float | None = None,
        _js: str | None = None,
        *,
        name: str | None = None,
        src: str | None = None,
        api_key: str | None = None,
        alias: str | None = None,
        **kwargs,
    ) -> Blocks | Dict[str, Any] | None:
        """
        For reverse compatibility reasons, this is both a class method and an instance
        method, the two of which, confusingly, do two completely different things.


        Class method: loads a demo from a Hugging Face Spaces repo and creates it locally and returns a block instance. Equivalent to gradio.Interface.load()


        Instance method: adds event that runs as soon as the demo loads in the browser. Example usage below.
        Parameters:
            name: Class Method - the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
            src: Class Method - the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
            api_key: Class Method - optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens
            alias: Class Method - optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
            fn: Instance Method - the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: Instance Method - List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: Instance Method - List of gradio.components to use as inputs. If the function returns no outputs, this should be an empty list.
            api_name: Instance Method - Defining this parameter exposes the endpoint in the api docs
            scroll_to_output: Instance Method - If True, will scroll to output component on completion
            show_progress: Instance Method - If True, will show progress animation while pending
            queue: Instance Method - If True, will place the request on the queue, if the queue exists
            batch: Instance Method - If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: Instance Method - Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: Instance Method - If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: Instance Method - If False, will not run postprocessing of component data before returning 'fn' output to the browser.
            every: Instance Method - Run this event 'every' number of seconds. Interpreted in seconds. Queue must be enabled.
        Example:
            import gradio as gr
            import datetime
            with gr.Blocks() as demo:
                def get_time():
                    return datetime.datetime.now().time()
                dt = gr.Textbox(label="Current time")
                demo.load(get_time, inputs=None, outputs=dt)
            demo.launch()
        """
        # _js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
        if isinstance(self_or_cls, type):
            if name is None:
                raise ValueError(
                    "Blocks.load() requires passing parameters as keyword arguments"
                )
            return external.load_blocks_from_repo(name, src, api_key, alias, **kwargs)
        else:
            return self_or_cls.set_event_trigger(
                event_name="load",
                fn=fn,
                inputs=inputs,
                outputs=outputs,
                api_name=api_name,
                preprocess=preprocess,
                postprocess=postprocess,
                scroll_to_output=scroll_to_output,
                show_progress=show_progress,
                js=_js,
                queue=queue,
                batch=batch,
                max_batch_size=max_batch_size,
                every=every,
                no_target=True,
            )

    def clear(self):
        """Resets the layout of the Blocks object."""
        self.blocks = {}
        self.fns = []
        self.dependencies = []
        self.children = []
        return self

    @document()
    def queue(
        self,
        concurrency_count: int = 1,
        status_update_rate: float | Literal["auto"] = "auto",
        client_position_to_load_data: int | None = None,
        default_enabled: bool | None = None,
        api_open: bool = True,
        max_size: int | None = None,
    ):
        """
        You can control the rate of processed requests by creating a queue. This will allow you to set the number of requests to be processed at one time, and will let users know their position in the queue.
        Parameters:
            concurrency_count: Number of worker threads that will be processing requests from the queue concurrently. Increasing this number will increase the rate at which requests are processed, but will also increase the memory usage of the queue.
            status_update_rate: If "auto", Queue will send status estimations to all clients whenever a job is finished. Otherwise Queue will send status at regular intervals set by this parameter as the number of seconds.
            client_position_to_load_data: DEPRECATED. This parameter is deprecated and has no effect.
            default_enabled: Deprecated and has no effect.
            api_open: If True, the REST routes of the backend will be open, allowing requests made directly to those endpoints to skip the queue.
            max_size: The maximum number of events the queue will store at any given moment. If the queue is full, new events will not be added and a user will receive a message saying that the queue is full. If None, the queue size will be unlimited.
        Example:
            demo = gr.Interface(gr.Textbox(), gr.Image(), image_generator)
            demo.queue(concurrency_count=3)
            demo.launch()
        """
        if default_enabled is not None:
            warnings.warn(
                "The default_enabled parameter of queue has no effect and will be removed "
                "in a future version of gradio."
            )
        self.enable_queue = True
        self.api_open = api_open
        if client_position_to_load_data is not None:
            warnings.warn("The client_position_to_load_data parameter is deprecated.")
        self._queue = queueing.Queue(
            live_updates=status_update_rate == "auto",
            concurrency_count=concurrency_count,
            update_intervals=status_update_rate if status_update_rate != "auto" else 1,
            max_size=max_size,
            blocks_dependencies=self.dependencies,
        )
        self.config = self.get_config_file()
        return self

    def launch(
        self,
        inline: bool | None = None,
        inbrowser: bool = False,
        share: bool | None = None,
        debug: bool = False,
        enable_queue: bool | None = None,
        max_threads: int = 40,
        auth: Callable | Tuple[str, str] | List[Tuple[str, str]] | None = None,
        auth_message: str | None = None,
        prevent_thread_lock: bool = False,
        show_error: bool = False,
        server_name: str | None = None,
        server_port: int | None = None,
        show_tips: bool = False,
        height: int = 500,
        width: int | str = "100%",
        encrypt: bool = False,
        favicon_path: str | None = None,
        ssl_keyfile: str | None = None,
        ssl_certfile: str | None = None,
        ssl_keyfile_password: str | None = None,
        quiet: bool = False,
        show_api: bool = True,
        _frontend: bool = True,
    ) -> Tuple[FastAPI, str, str]:
        """
        Launches a simple web server that serves the demo. Can also be used to create a
        public link used by anyone to access the demo from their browser by setting share=True.

        Parameters:
            inline: whether to display in the interface inline in an iframe. Defaults to True in python notebooks; False otherwise.
            inbrowser: whether to automatically launch the interface in a new tab on the default browser.
            share: whether to create a publicly shareable link for the interface. Creates an SSH tunnel to make your UI accessible from anywhere. If not provided, it is set to False by default every time, except when running in Google Colab. When localhost is not accessible (e.g. Google Colab), setting share=False is not supported.
            debug: if True, blocks the main thread from running. If running in Google Colab, this is needed to print the errors in the cell output.
            auth: If provided, username and password (or list of username-password tuples) required to access interface. Can also provide function that takes username and password and returns True if valid login.
            auth_message: If provided, HTML message provided on login page.
            prevent_thread_lock: If True, the interface will block the main thread while the server is running.
            show_error: If True, any errors in the interface will be displayed in an alert modal and printed in the browser console log
            server_port: will start gradio app on this port (if available). Can be set by environment variable GRADIO_SERVER_PORT. If None, will search for an available port starting at 7860.
            server_name: to make app accessible on local network, set this to "0.0.0.0". Can be set by environment variable GRADIO_SERVER_NAME. If None, will use "127.0.0.1".
            show_tips: if True, will occasionally show tips about new Gradio features
            enable_queue: DEPRECATED (use .queue() method instead.) if True, inference requests will be served through a queue instead of with parallel threads. Required for longer inference times (> 1min) to prevent timeout. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
            max_threads: the maximum number of total threads that the Gradio app can generate in parallel. The default is inherited from the starlette library (currently 40). Applies whether the queue is enabled or not. But if queuing is enabled, this parameter is increaseed to be at least the concurrency_count of the queue.
            width: The width in pixels of the iframe element containing the interface (used if inline=True)
            height: The height in pixels of the iframe element containing the interface (used if inline=True)
            encrypt: If True, flagged data will be encrypted by key provided by creator at launch
            favicon_path: If a path to a file (.png, .gif, or .ico) is provided, it will be used as the favicon for the web page.
            ssl_keyfile: If a path to a file is provided, will use this as the private key file to create a local server running on https.
            ssl_certfile: If a path to a file is provided, will use this as the signed certificate for https. Needs to be provided if ssl_keyfile is provided.
            ssl_keyfile_password: If a password is provided, will use this with the ssl certificate for https.
            quiet: If True, suppresses most print statements.
            show_api: If True, shows the api docs in the footer of the app. Default True. If the queue is enabled, then api_open parameter of .queue() will determine if the api docs are shown, independent of the value of show_api.
        Returns:
            app: FastAPI app object that is running the demo
            local_url: Locally accessible link to the demo
            share_url: Publicly accessible link to the demo (if share=True, otherwise None)
        Example:
            import gradio as gr
            def reverse(text):
                return text[::-1]
            demo = gr.Interface(reverse, "text", "text")
            demo.launch(share=True, auth=("username", "password"))
        """
        self.dev_mode = False
        if (
            auth
            and not callable(auth)
            and not isinstance(auth[0], tuple)
            and not isinstance(auth[0], list)
        ):
            self.auth = [auth]
        else:
            self.auth = auth
        self.auth_message = auth_message
        self.show_tips = show_tips
        self.show_error = show_error
        self.height = height
        self.width = width
        self.favicon_path = favicon_path
        self.progress_tracking = any(
            block_fn.fn is not None and special_args(block_fn.fn)[1] is not None
            for block_fn in self.fns
        )

        if enable_queue is not None:
            self.enable_queue = enable_queue
            warnings.warn(
                "The `enable_queue` parameter has been deprecated. Please use the `.queue()` method instead.",
                DeprecationWarning,
            )

        if self.is_space:
            self.enable_queue = self.enable_queue is not False
        else:
            self.enable_queue = self.enable_queue is True
        if self.enable_queue and not hasattr(self, "_queue"):
            self.queue()
        self.show_api = self.api_open if self.enable_queue else show_api

        if not self.enable_queue and self.progress_tracking:
            raise ValueError("Progress tracking requires queuing to be enabled.")

        for dep in self.dependencies:
            for i in dep["cancels"]:
                if not self.queue_enabled_for_fn(i):
                    raise ValueError(
                        "In order to cancel an event, the queue for that event must be enabled! "
                        "You may get this error by either 1) passing a function that uses the yield keyword "
                        "into an interface without enabling the queue or 2) defining an event that cancels "
                        "another event without enabling the queue. Both can be solved by calling .queue() "
                        "before .launch()"
                    )
            if dep["batch"] and (
                dep["queue"] is False
                or (dep["queue"] is None and not self.enable_queue)
            ):
                raise ValueError("In order to use batching, the queue must be enabled.")

        self.config = self.get_config_file()
        self.encrypt = encrypt
        self.max_threads = max(
            self._queue.max_thread_count if self.enable_queue else 0, max_threads
        )
        if self.encrypt:
            self.encryption_key = encryptor.get_key(
                getpass.getpass("Enter key for encryption: ")
            )

        if self.is_running:
            assert isinstance(
                self.local_url, str
            ), f"Invalid local_url: {self.local_url}"
            if not (quiet):
                print(
                    "Rerunning server... use `close()` to stop if you need to change `launch()` parameters.\n----"
                )
        else:
            server_name, server_port, local_url, app, server = networking.start_server(
                self,
                server_name,
                server_port,
                ssl_keyfile,
                ssl_certfile,
                ssl_keyfile_password,
            )
            self.server_name = server_name
            self.local_url = local_url
            self.server_port = server_port
            self.server_app = app
            self.server = server
            self.is_running = True
            self.is_colab = utils.colab_check()
            self.protocol = (
                "https"
                if self.local_url.startswith("https") or self.is_colab
                else "http"
            )

            if self.enable_queue:
                self._queue.set_url(self.local_url)

            # Cannot run async functions in background other than app's scope.
            # Workaround by triggering the app endpoint
            requests.get(f"{self.local_url}startup-events")

            if self.enable_queue:
                if self.encrypt:
                    raise ValueError("Cannot queue with encryption enabled.")
        utils.launch_counter()

        self.share = (
            share
            if share is not None
            else True
            if self.is_colab and self.enable_queue
            else False
        )

        # If running in a colab or not able to access localhost,
        # a shareable link must be created.
        if _frontend and (not networking.url_ok(self.local_url)) and (not self.share):
            raise ValueError(
                "When localhost is not accessible, a shareable link must be created. Please set share=True."
            )

        if self.is_colab:
            if not quiet:
                if debug:
                    print(strings.en["COLAB_DEBUG_TRUE"])
                else:
                    print(strings.en["COLAB_DEBUG_FALSE"])
                if not self.share:
                    print(strings.en["COLAB_WARNING"].format(self.server_port))
            if self.enable_queue and not self.share:
                raise ValueError(
                    "When using queueing in Colab, a shareable link must be created. Please set share=True."
                )
        else:
            print(
                strings.en["RUNNING_LOCALLY_SEPARATED"].format(
                    self.protocol, self.server_name, self.server_port
                )
            )

        if self.share:
            if self.is_space:
                raise RuntimeError("Share is not supported when you are in Spaces")
            try:
                if self.share_url is None:
                    self.share_url = networking.setup_tunnel(
                        self.server_name, self.server_port
                    )
                print(strings.en["SHARE_LINK_DISPLAY"].format(self.share_url))
                if not (quiet):
                    print(strings.en["SHARE_LINK_MESSAGE"])
            except RuntimeError:
                if self.analytics_enabled:
                    utils.error_analytics(self.ip_address, "Not able to set up tunnel")
                self.share_url = None
                self.share = False
                print(strings.en["COULD_NOT_GET_SHARE_LINK"])
        else:
            if not (quiet):
                print(strings.en["PUBLIC_SHARE_TRUE"])
            self.share_url = None

        if inbrowser:
            link = self.share_url if self.share and self.share_url else self.local_url
            webbrowser.open(link)

        # Check if running in a Python notebook in which case, display inline
        if inline is None:
            inline = utils.ipython_check() and (self.auth is None)
        if inline:
            if self.auth is not None:
                print(
                    "Warning: authentication is not supported inline. Please"
                    "click the link to access the interface in a new tab."
                )
            try:
                from IPython.display import HTML, Javascript, display  # type: ignore

                if self.share and self.share_url:
                    while not networking.url_ok(self.share_url):
                        time.sleep(0.25)
                    display(
                        HTML(
                            f'<div><iframe src="{self.share_url}" width="{self.width}" height="{self.height}" allow="autoplay; camera; microphone; clipboard-read; clipboard-write;" frameborder="0" allowfullscreen></iframe></div>'
                        )
                    )
                elif self.is_colab:
                    # modified from /usr/local/lib/python3.7/dist-packages/google/colab/output/_util.py within Colab environment
                    code = """(async (port, path, width, height, cache, element) => {
                        if (!google.colab.kernel.accessAllowed && !cache) {
                            return;
                        }
                        element.appendChild(document.createTextNode(''));
                        const url = await google.colab.kernel.proxyPort(port, {cache});

                        const external_link = document.createElement('div');
                        external_link.innerHTML = `
                            <div style="font-family: monospace; margin-bottom: 0.5rem">
                                Running on <a href=${new URL(path, url).toString()} target="_blank">
                                    https://localhost:${port}${path}
                                </a>
                            </div>
                        `;
                        element.appendChild(external_link);

                        const iframe = document.createElement('iframe');
                        iframe.src = new URL(path, url).toString();
                        iframe.height = height;
                        iframe.allow = "autoplay; camera; microphone; clipboard-read; clipboard-write;"
                        iframe.width = width;
                        iframe.style.border = 0;
                        element.appendChild(iframe);
                    })""" + "({port}, {path}, {width}, {height}, {cache}, window.element)".format(
                        port=json.dumps(self.server_port),
                        path=json.dumps("/"),
                        width=json.dumps(self.width),
                        height=json.dumps(self.height),
                        cache=json.dumps(False),
                    )

                    display(Javascript(code))
                else:
                    display(
                        HTML(
                            f'<div><iframe src="{self.local_url}" width="{self.width}" height="{self.height}" allow="autoplay; camera; microphone; clipboard-read; clipboard-write;" frameborder="0" allowfullscreen></iframe></div>'
                        )
                    )
            except ImportError:
                pass

        if getattr(self, "analytics_enabled", False):
            data = {
                "launch_method": "browser" if inbrowser else "inline",
                "is_google_colab": self.is_colab,
                "is_sharing_on": self.share,
                "share_url": self.share_url,
                "ip_address": self.ip_address,
                "enable_queue": self.enable_queue,
                "show_tips": self.show_tips,
                "server_name": server_name,
                "server_port": server_port,
                "is_spaces": self.is_space,
                "mode": self.mode,
            }
            utils.launch_analytics(data)

        utils.show_tip(self)

        # Block main thread if debug==True
        if debug or int(os.getenv("GRADIO_DEBUG", 0)) == 1:
            self.block_thread()
        # Block main thread if running in a script to stop script from exiting
        is_in_interactive_mode = bool(getattr(sys, "ps1", sys.flags.interactive))

        if not prevent_thread_lock and not is_in_interactive_mode:
            self.block_thread()

        return TupleNoPrint((self.server_app, self.local_url, self.share_url))

    def integrate(
        self,
        comet_ml: comet_ml.Experiment | None = None,
        wandb: ModuleType | None = None,
        mlflow: ModuleType | None = None,
    ) -> None:
        """
        A catch-all method for integrating with other libraries. This method should be run after launch()
        Parameters:
            comet_ml: If a comet_ml Experiment object is provided, will integrate with the experiment and appear on Comet dashboard
            wandb: If the wandb module is provided, will integrate with it and appear on WandB dashboard
            mlflow: If the mlflow module  is provided, will integrate with the experiment and appear on ML Flow dashboard
        """
        analytics_integration = ""
        if comet_ml is not None:
            analytics_integration = "CometML"
            comet_ml.log_other("Created from", "Gradio")
            if self.share_url is not None:
                comet_ml.log_text("gradio: " + self.share_url)
                comet_ml.end()
            elif self.local_url:
                comet_ml.log_text("gradio: " + self.local_url)
                comet_ml.end()
            else:
                raise ValueError("Please run `launch()` first.")
        if wandb is not None:
            analytics_integration = "WandB"
            if self.share_url is not None:
                wandb.log(
                    {
                        "Gradio panel": wandb.Html(
                            '<iframe src="'
                            + self.share_url
                            + '" width="'
                            + str(self.width)
                            + '" height="'
                            + str(self.height)
                            + '" frameBorder="0"></iframe>'
                        )
                    }
                )
            else:
                print(
                    "The WandB integration requires you to "
                    "`launch(share=True)` first."
                )
        if mlflow is not None:
            analytics_integration = "MLFlow"
            if self.share_url is not None:
                mlflow.log_param("Gradio Interface Share Link", self.share_url)
            else:
                mlflow.log_param("Gradio Interface Local Link", self.local_url)
        if self.analytics_enabled and analytics_integration:
            data = {"integration": analytics_integration}
            utils.integration_analytics(data)

    def close(self, verbose: bool = True) -> None:
        """
        Closes the Interface that was launched and frees the port.
        """
        try:
            if self.enable_queue:
                self._queue.close()
            self.server.close()
            self.is_running = False
            if verbose:
                print("Closing server running on port: {}".format(self.server_port))
        except (AttributeError, OSError):  # can't close if not running
            pass

    def block_thread(
        self,
    ) -> None:
        """Block main thread until interrupted by user."""
        try:
            while True:
                time.sleep(0.1)
        except (KeyboardInterrupt, OSError):
            print("Keyboard interruption in main thread... closing server.")
            self.server.close()
            for tunnel in CURRENT_TUNNELS:
                tunnel.kill()

    def attach_load_events(self):
        """Add a load event for every component whose initial value should be randomized."""
        if Context.root_block:
            for component in Context.root_block.blocks.values():
                if (
                    isinstance(component, components.IOComponent)
                    and component.load_event_to_attach
                ):
                    load_fn, every = component.load_event_to_attach
                    # Use set_event_trigger to avoid ambiguity between load class/instance method
                    self.set_event_trigger(
                        "load",
                        load_fn,
                        None,
                        component,
                        no_target=True,
                        queue=False,
                        every=every,
                    )

    def startup_events(self):
        """Events that should be run when the app containing this block starts up."""

        if self.enable_queue:
            utils.run_coro_in_background(self._queue.start, (self.progress_tracking,))
        utils.run_coro_in_background(self.create_limiter)

    def queue_enabled_for_fn(self, fn_index: int):
        if self.dependencies[fn_index]["queue"] is None:
            return self.enable_queue
        return self.dependencies[fn_index]["queue"]