Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,497 Bytes
59b2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
from yacs.config import CfgNode as CN
_CN = CN()
_CN.name = 'default'
_CN.suffix ='sintel'
_CN.gamma = 0.75
_CN.max_flow = 400
_CN.batch_size = 6
_CN.sum_freq = 100
_CN.val_freq = 100000000
_CN.image_size = [432, 960]
_CN.add_noise = False
_CN.use_smoothl1 = False
_CN.critical_params = []
_CN.transformer = 'percostformer3'
### change the path here
_CN.model = "pretrained/sintel.pth"
_CN.percostformer3 = CN()
_CN.percostformer3.pe = 'linear'
_CN.percostformer3.dropout = 0.0
_CN.percostformer3.droppath = 0.0
_CN.percostformer3.encoder_latent_dim = 256 # in twins, this is 256
_CN.percostformer3.query_latent_dim = 64
_CN.percostformer3.cost_latent_input_dim = 64
_CN.percostformer3.cost_latent_token_num = 8
_CN.percostformer3.cost_latent_dim = 128
_CN.percostformer3.cost_heads_num = 1
# encoder
_CN.percostformer3.pretrain = True
_CN.percostformer3.use_convertor = False
_CN.percostformer3.del_layers = True
_CN.percostformer3.encoder_depth = 3
_CN.percostformer3.expand_factor = 4
_CN.percostformer3.vertical_encoder_attn = "twins"
_CN.percostformer3.attn_dim = 128
_CN.percostformer3.patch_size = 8
_CN.percostformer3.patch_embed = 'single'
_CN.percostformer3.cross_attn = "all"
_CN.percostformer3.gma = "GMA"
_CN.percostformer3.vert_c_dim = 64
_CN.percostformer3.cost_encoder_res = True
_CN.percostformer3.cnet = 'twins'
_CN.percostformer3.fnet = 'twins'
_CN.percostformer3.flow_or_pe = "and"
_CN.percostformer3.use_patch = False # use cost patch rather than local cost as query
_CN.percostformer3.use_rpe = False
_CN.percostformer3.detach_local = False
_CN.percostformer3.no_sc = False
_CN.percostformer3.r_16 =-1
_CN.percostformer3.quater_refine = False
# pretrain config
_CN.percostformer3.pretrain_mode = False
_CN.percostformer3.pic_size = [368, 496, 368, 496]
_CN.percostformer3.mask_ratio = 0.5
_CN.percostformer3.query_num = 30
_CN.percostformer3.no_border = True
_CN.percostformer3.gt_r = 15
_CN.percostformer3.fix_pe = False
# decoder
_CN.percostformer3.decoder_depth = 12
_CN.percostformer3.critical_params = ['vert_c_dim', 'encoder_depth', 'vertical_encoder_attn', "use_patch", "flow_or_pe", "use_rpe", "dropout", "detach_local", "expand_factor"]
### TRAINER
_CN.trainer = CN()
_CN.trainer.scheduler = 'OneCycleLR'
_CN.trainer.optimizer = 'adamw'
_CN.trainer.canonical_lr = 12.5e-5
_CN.trainer.adamw_decay = 1e-5
_CN.trainer.clip = 1.0
_CN.trainer.num_steps = 120000
_CN.trainer.epsilon = 1e-8
_CN.trainer.anneal_strategy = 'linear'
def get_cfg():
return _CN.clone() |