Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,440 Bytes
59b2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Union
import cv2, os, sys
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import EulerDiscreteScheduler
from diffusers.models import AutoencoderKLTemporalDecoder
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers import DiffusionPipeline
# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from utils.img_utils import tensor2np
from svd.temporal_controlnet import ControlNetModel
from svd.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def _append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
# Based on:
# https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
batch_size, channels, num_frames, height, width = video.shape
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
return outputs
@dataclass
class StableVideoDiffusionPipelineOutput(BaseOutput):
r"""
Output class for zero-shot text-to-video pipeline.
Args:
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
frames: Union[List[PIL.Image.Image], np.ndarray]
class StableVideoDiffusionControlNetPipeline(DiffusionPipeline):
r"""
Pipeline to generate video from an input image using Stable Video Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
unet ([`UNetSpatioTemporalConditionModel`]):
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
scheduler ([`EulerDiscreteScheduler`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images.
"""
model_cpu_offload_seq = "image_encoder->unet->vae"
_callback_tensor_inputs = ["latents"]
def __init__(
self,
vae: AutoencoderKLTemporalDecoder,
image_encoder: CLIPVisionModelWithProjection,
unet: UNetSpatioTemporalConditionModel,
scheduler: EulerDiscreteScheduler,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
# TODO: multi-controlnet consideration
self.register_modules(
vae = vae,
image_encoder = image_encoder,
unet = unet,
scheduler = scheduler,
feature_extractor = feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) # The vae_scale_factor is for image dimension, not for image size
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
def encode_clip(self, image, prompt, use_text, text_encoder, device, num_videos_per_prompt, do_classifier_free_guidance, use_instructpix2pix):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.image_processor.pil_to_numpy(image) # Map [0, 255] to [0, 1] range
image = self.image_processor.numpy_to_pt(image)
# We normalize the image before resizing to match with the original implementation.
# Then, we unnormalize it after resizing.
image = image * 2.0 - 1.0 # [-1, 1] range
image = _resize_with_antialiasing(image, (224, 224)) # Resize to square image
image = (image + 1.0) / 2.0 # [0, 1] range
# Normalize the image with for CLIP input
image = self.feature_extractor(
images=image,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values # The value range is a little deviated now, and I got [-1.76, 2.15] for one sample
image = image.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
encoder_hidden_states = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
# Prepare for the text embeddings if needed
if use_text:
text_embeddings = text_encoder(prompt)[0]
# Concat two embeddings together on dim 1
encoder_hidden_states = torch.cat((text_embeddings, encoder_hidden_states), dim=1)
# Layer norm on the last dim TODO: 这里order小改了一下顺序,变成先encoder hidden states了
layer_norm = nn.LayerNorm((78, 1024)).to(device=device, dtype=dtype)
encoder_hidden_states = layer_norm(encoder_hidden_states)
if do_classifier_free_guidance:
negative_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if use_instructpix2pix:
encoder_hidden_states = torch.cat([encoder_hidden_states, negative_encoder_hidden_states, negative_encoder_hidden_states])
else:
encoder_hidden_states = torch.cat([negative_encoder_hidden_states, encoder_hidden_states])
return encoder_hidden_states
def _encode_vae_image(
self,
image: torch.Tensor,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
use_instructpix2pix,
):
image = image.to(device=device)
image_latents = self.vae.encode(image).latent_dist.mode()
if do_classifier_free_guidance:
negative_image_latents = torch.zeros_like(image_latents)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if use_instructpix2pix:
image_latents = torch.cat([image_latents, image_latents, negative_image_latents])
else:
image_latents = torch.cat([negative_image_latents, image_latents])
# duplicate image_latents for each generation per prompt, using mps friendly method
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
return image_latents
def _get_add_time_ids(
self,
fps,
motion_bucket_id,
noise_aug_strength,
dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
guess_mode,
use_instructpix2pix,
):
# Define the default values from SVD
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
# Sanity Check
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
if do_classifier_free_guidance:
if use_instructpix2pix:
add_time_ids = torch.cat([add_time_ids, add_time_ids, add_time_ids])
else:
add_time_ids = torch.cat([add_time_ids, add_time_ids])
# Return the info
return add_time_ids
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
latents = latents.flatten(0, 1)
latents = 1 / self.vae.config.scaling_factor * latents
accepts_num_frames = "num_frames" in set(inspect.signature(self.vae.forward).parameters.keys())
# decode decode_chunk_size frames at a time to avoid OOM
frames = []
for i in range(0, latents.shape[0], decode_chunk_size):
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
decode_kwargs = {}
if accepts_num_frames:
# we only pass num_frames_in if it's expected
decode_kwargs["num_frames"] = num_frames_in
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
frames.append(frame)
frames = torch.cat(frames, dim=0)
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
frames = frames.float()
return frames
def check_inputs(self,
image,
height,
width,
):
if (
not isinstance(image, torch.Tensor)
and not isinstance(image, PIL.Image.Image)
and not isinstance(image, list)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(image)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
# TODO: I didn't test input for controlnet_conditioning_scale, control_guidance_start, and control_guidance_end
def prepare_latents(
self,
batch_size,
num_frames,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_frames,
num_channels_latents // 2,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@property
def guidance_scale(self):
return self._guidance_scale
# We don't directly have do_classifier_free_guidance function, we judge simply by max_guidance
@property
def num_timesteps(self):
return self._num_timesteps
def prepare_condition_image(
self,
condition_img,
width,
height,
batch_size,
num_videos_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
# The input of condition_img is already in the range [0, 1]
condition_img = torch.from_numpy(condition_img) # hwc -> chw
condition_img = condition_img.to(torch.float16).to(self._execution_device) # Set this in default
# CFG will be done in main function, not here now
return condition_img # [0, 1] range && Torch data type
@torch.no_grad()
def __call__(
self,
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
condition_img: np,
controlnet: ControlNetModel,
prompt = None,
use_text: bool = False,
text_encoder = None,
height: int = 576,
width: int = 1024,
num_frames: Optional[int] = None,
num_inference_steps: int = 25,
min_guidance_scale: float = 1.0,
max_guidance_scale: float = 3.0,
fps: int = 7,
motion_bucket_id: int = 127,
# controlnet_image_index: Optional[int] = [0],
# coordinate_values = None,
noise_aug_strength: int = 0.02,
decode_chunk_size: Optional[int] = None,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
return_dict: bool = True,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
use_instructpix2pix: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
inner_conditioning_scale: float = 1.0,
guess_mode: bool = True,
image_guidance_scale: float = 7.5,
):
r"""
The call function to the pipeline for generation.
Args:
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_frames (`int`, *optional*):
The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`
num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter is modulated by `strength`.
min_guidance_scale (`float`, *optional*, defaults to 1.0):
The minimum guidance scale. Used for the classifier free guidance with first frame.
max_guidance_scale (`float`, *optional*, defaults to 3.0):
The maximum guidance scale. Used for the classifier free guidance with last frame.
fps (`int`, *optional*, defaults to 7):
Frames per second. The rate at which the generated images shall be exported to a video after generation.
Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
motion_bucket_id (`int`, *optional*, defaults to 127):
The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video.
noise_aug_strength (`int`, *optional*, defaults to 0.02):
The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.
decode_chunk_size (`int`, *optional*):
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
Returns:
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list of list with the generated frames.
Examples:
```py
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200")
image = image.resize((1024, 576))
frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
export_to_video(frames, "generated.mp4", fps=7)
```
"""
# align format for control guidance
mult = 1
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor # It seems that self.unet.config.sample_size * self.vae_scale_factor is a default image size input setting
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
# 1. Check inputs. Raise error if not correct
self.check_inputs(image, height, width)
# 2. Define call parameters
if isinstance(image, PIL.Image.Image):
batch_size = 1
elif isinstance(image, list):
batch_size = len(image)
else:
batch_size = image.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = max_guidance_scale > 1.0
if do_classifier_free_guidance:
print("We will use CFG!!!")
# 3. Encode input image
encoder_hidden_states = self.encode_clip(image, prompt, use_text, text_encoder, device, num_videos_per_prompt, do_classifier_free_guidance, use_instructpix2pix)
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
# is why it is reduced here.
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
fps = fps - 1
# 4. Encode input image using VAE
image = self.image_processor.preprocess(image, height=height, width=width) # [0, 255] to [-1, 1]
noise = randn_tensor(image.shape, generator=generator, device=image.device, dtype=image.dtype)
image = image + noise_aug_strength * noise
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.vae.to(dtype=torch.float32)
image_latents = self._encode_vae_image(image, device, num_videos_per_prompt, do_classifier_free_guidance, use_instructpix2pix)
image_latents = image_latents.to(encoder_hidden_states.dtype)
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
# Repeat the image latents for each frame so we can concatenate them with the noise
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
# 4.5 Prepare control image (Will need to consider multiControlNet)
condition_img = self.prepare_condition_image(
condition_img = condition_img,
width = width,
height = height,
batch_size = batch_size * num_videos_per_prompt,
num_videos_per_prompt = num_videos_per_prompt,
device = device,
dtype = controlnet.dtype,
do_classifier_free_guidance = do_classifier_free_guidance,
guess_mode = guess_mode,
) # [0, 255] to [0, 1] range
# 5. Get Added Time IDs
added_time_ids = self._get_add_time_ids(
fps,
motion_bucket_id,
noise_aug_strength,
# coordinate_values,
encoder_hidden_states.dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
guess_mode = guess_mode,
use_instructpix2pix = use_instructpix2pix,
)
added_time_ids = added_time_ids.to(device)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_frames,
num_channels_latents,
height,
width,
encoder_hidden_states.dtype,
device,
generator,
latents,
) # Nosiy latents across all frames needed
# 7. Prepare guidance scale
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0)
guidance_scale = guidance_scale.to(device, latents.dtype)
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
guidance_scale = _append_dims(guidance_scale, latents.ndim)
self._guidance_scale = guidance_scale
# 7.5 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
if use_instructpix2pix:
latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
else:
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # I think that this is where sequential generation takes influence
# Concatenate image_latents over channels dimension for video diffusion purposes
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2) # image_latents is fixed and latent_model_input will be based on latents which is updated frequently
# ControlNet Scale
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
# assert condition_img.shape[1] >= len(controlnet_image_index)
# VAE encode
controlnet_cond = self.vae.encode(condition_img).latent_dist.mode()
if do_classifier_free_guidance:
if use_instructpix2pix:
controlnet_cond = torch.cat([controlnet_cond, controlnet_cond, controlnet_cond])
# controlnet_conditioning_mask = torch.cat([controlnet_conditioning_mask, controlnet_conditioning_mask, controlnet_conditioning_mask])
else:
controlnet_cond = torch.cat([controlnet_cond, controlnet_cond])
# controlnet_conditioning_mask = torch.cat([controlnet_conditioning_mask, controlnet_conditioning_mask])
down_block_res_samples, mid_block_res_sample = controlnet(
sample = latent_model_input,
timestep = t,
encoder_hidden_states = encoder_hidden_states,
added_time_ids = added_time_ids,
controlnet_cond = controlnet_cond,
return_dict = False,
inner_conditioning_scale = inner_conditioning_scale, # Inner conditioning scale
conditioning_scale = cond_scale, # Outer conditioning scale
guess_mode = guess_mode,
)
if guess_mode and do_classifier_free_guidance: # Won't consider this one, since we don't use guess mode
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# predict the noise residual
noise_pred = self.unet(
sample = latent_model_input, # [batch, frames, 4*2, height, width]
timestep = t,
encoder_hidden_states = encoder_hidden_states,
added_time_ids = added_time_ids,
down_block_additional_residuals = down_block_res_samples,
mid_block_additional_residual = mid_block_res_sample,
return_dict = False,
)[0] # image_embeddings is used for cross attention metioned in the paper
# perform guidance
if do_classifier_free_guidance:
if use_instructpix2pix:
noise_pred_1st_frame, noise_pred_cond, noise_pred_uncond = noise_pred.chunk(3) # There are two noises here: one is unconditional and one is conditional
noise_pred = noise_pred_uncond + \
self.guidance_scale * (noise_pred_cond - noise_pred_uncond) + \
image_guidance_scale * (noise_pred_cond - noise_pred_1st_frame) # InstructPix2Pix is (noise_pred_1st_frame - noise_pred_cond)
else:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) # There are two noises here: one is unconditional and one is conditional
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == "latent":
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
frames = tensor2vid(frames, self.image_processor, output_type=output_type)
else:
frames = latents
self.maybe_free_model_hooks()
if not return_dict:
return frames
return StableVideoDiffusionPipelineOutput(frames=frames)
# resizing utils
# TODO: clean up later (put to shared utils file)
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = _gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = _filter2d(input, kernel_x[..., None, :])
out = _filter2d(out_x, kernel_y[..., None])
return out
def is_compiled_module(module) -> bool:
"""Check whether the module was compiled with torch.compile()"""
if is_torch_version("<", "2.0.0") or not hasattr(torch, "_dynamo"):
return False
return isinstance(module, torch._dynamo.eval_frame.OptimizedModule) |