HikariDawn777's picture
feat: initial push
59b2a81
raw
history blame
5.71 kB
import time
import torch
import cv2
from PIL import Image, ImageDraw, ImageOps
import numpy as np
from typing import Union
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
import matplotlib.pyplot as plt
import PIL
from .mask_painter import mask_painter
class BaseSegmenter:
def __init__(self, SAM_checkpoint, model_type, device='cuda:0'):
"""
device: model device
SAM_checkpoint: path of SAM checkpoint
model_type: vit_b, vit_l, vit_h
"""
print(f"Initializing BaseSegmenter to {device}")
assert model_type in ['vit_b', 'vit_l', 'vit_h'], 'model_type must be vit_b, vit_l, or vit_h'
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.model = sam_model_registry[model_type](checkpoint=SAM_checkpoint)
self.model.to(device=self.device)
self.predictor = SamPredictor(self.model)
self.embedded = False
@torch.no_grad()
def set_image(self, image: np.ndarray):
# PIL.open(image_path) 3channel: RGB
# image embedding: avoid encode the same image multiple times
self.orignal_image = image
if self.embedded:
print('repeat embedding, please reset_image.')
return
self.predictor.set_image(image)
self.embedded = True
return
@torch.no_grad()
def reset_image(self):
# reset image embeding
self.predictor.reset_image()
self.embedded = False
def predict(self, prompts, mode, multimask=True):
"""
image: numpy array, h, w, 3
prompts: dictionary, 3 keys: 'point_coords', 'point_labels', 'mask_input'
prompts['point_coords']: numpy array [N,2]
prompts['point_labels']: numpy array [1,N]
prompts['mask_input']: numpy array [1,256,256]
mode: 'point' (points only), 'mask' (mask only), 'both' (consider both)
mask_outputs: True (return 3 masks), False (return 1 mask only)
whem mask_outputs=True, mask_input=logits[np.argmax(scores), :, :][None, :, :]
"""
assert self.embedded, 'prediction is called before set_image (feature embedding).'
assert mode in ['point', 'mask', 'both'], 'mode must be point, mask, or both'
if mode == 'point':
masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'],
point_labels=prompts['point_labels'],
multimask_output=multimask)
elif mode == 'mask':
masks, scores, logits = self.predictor.predict(mask_input=prompts['mask_input'],
multimask_output=multimask)
elif mode == 'both': # both
masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'],
point_labels=prompts['point_labels'],
mask_input=prompts['mask_input'],
multimask_output=multimask)
else:
raise("Not implement now!")
# masks (n, h, w), scores (n,), logits (n, 256, 256)
return masks, scores, logits
if __name__ == "__main__":
# load and show an image
image = cv2.imread('/hhd3/gaoshang/truck.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # numpy array (h, w, 3)
# initialise BaseSegmenter
SAM_checkpoint= '/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth'
model_type = 'vit_h'
device = "cuda:4"
base_segmenter = BaseSegmenter(SAM_checkpoint=SAM_checkpoint, model_type=model_type, device=device)
# image embedding (once embedded, multiple prompts can be applied)
base_segmenter.set_image(image)
# examples
# point only ------------------------
mode = 'point'
prompts = {
'point_coords': np.array([[500, 375], [1125, 625]]),
'point_labels': np.array([1, 1]),
}
masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=False) # masks (n, h, w), scores (n,), logits (n, 256, 256)
painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8)
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
cv2.imwrite('/hhd3/gaoshang/truck_point.jpg', painted_image)
# both ------------------------
mode = 'both'
mask_input = logits[np.argmax(scores), :, :]
prompts = {'mask_input': mask_input [None, :, :]}
prompts = {
'point_coords': np.array([[500, 375], [1125, 625]]),
'point_labels': np.array([1, 0]),
'mask_input': mask_input[None, :, :]
}
masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True) # masks (n, h, w), scores (n,), logits (n, 256, 256)
painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8)
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
cv2.imwrite('/hhd3/gaoshang/truck_both.jpg', painted_image)
# mask only ------------------------
mode = 'mask'
mask_input = logits[np.argmax(scores), :, :]
prompts = {'mask_input': mask_input[None, :, :]}
masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True) # masks (n, h, w), scores (n,), logits (n, 256, 256)
painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8)
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3)
cv2.imwrite('/hhd3/gaoshang/truck_mask.jpg', painted_image)