Spaces:
Running
on
Zero
Running
on
Zero
# paint masks, contours, or points on images, with specified colors | |
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image | |
import copy | |
import time | |
def colormap(rgb=True): | |
color_list = np.array( | |
[ | |
0.000, 0.000, 0.000, | |
1.000, 1.000, 1.000, | |
1.000, 0.498, 0.313, | |
0.392, 0.581, 0.929, | |
0.000, 0.447, 0.741, | |
0.850, 0.325, 0.098, | |
0.929, 0.694, 0.125, | |
0.494, 0.184, 0.556, | |
0.466, 0.674, 0.188, | |
0.301, 0.745, 0.933, | |
0.635, 0.078, 0.184, | |
0.300, 0.300, 0.300, | |
0.600, 0.600, 0.600, | |
1.000, 0.000, 0.000, | |
1.000, 0.500, 0.000, | |
0.749, 0.749, 0.000, | |
0.000, 1.000, 0.000, | |
0.000, 0.000, 1.000, | |
0.667, 0.000, 1.000, | |
0.333, 0.333, 0.000, | |
0.333, 0.667, 0.000, | |
0.333, 1.000, 0.000, | |
0.667, 0.333, 0.000, | |
0.667, 0.667, 0.000, | |
0.667, 1.000, 0.000, | |
1.000, 0.333, 0.000, | |
1.000, 0.667, 0.000, | |
1.000, 1.000, 0.000, | |
0.000, 0.333, 0.500, | |
0.000, 0.667, 0.500, | |
0.000, 1.000, 0.500, | |
0.333, 0.000, 0.500, | |
0.333, 0.333, 0.500, | |
0.333, 0.667, 0.500, | |
0.333, 1.000, 0.500, | |
0.667, 0.000, 0.500, | |
0.667, 0.333, 0.500, | |
0.667, 0.667, 0.500, | |
0.667, 1.000, 0.500, | |
1.000, 0.000, 0.500, | |
1.000, 0.333, 0.500, | |
1.000, 0.667, 0.500, | |
1.000, 1.000, 0.500, | |
0.000, 0.333, 1.000, | |
0.000, 0.667, 1.000, | |
0.000, 1.000, 1.000, | |
0.333, 0.000, 1.000, | |
0.333, 0.333, 1.000, | |
0.333, 0.667, 1.000, | |
0.333, 1.000, 1.000, | |
0.667, 0.000, 1.000, | |
0.667, 0.333, 1.000, | |
0.667, 0.667, 1.000, | |
0.667, 1.000, 1.000, | |
1.000, 0.000, 1.000, | |
1.000, 0.333, 1.000, | |
1.000, 0.667, 1.000, | |
0.167, 0.000, 0.000, | |
0.333, 0.000, 0.000, | |
0.500, 0.000, 0.000, | |
0.667, 0.000, 0.000, | |
0.833, 0.000, 0.000, | |
1.000, 0.000, 0.000, | |
0.000, 0.167, 0.000, | |
0.000, 0.333, 0.000, | |
0.000, 0.500, 0.000, | |
0.000, 0.667, 0.000, | |
0.000, 0.833, 0.000, | |
0.000, 1.000, 0.000, | |
0.000, 0.000, 0.167, | |
0.000, 0.000, 0.333, | |
0.000, 0.000, 0.500, | |
0.000, 0.000, 0.667, | |
0.000, 0.000, 0.833, | |
0.000, 0.000, 1.000, | |
0.143, 0.143, 0.143, | |
0.286, 0.286, 0.286, | |
0.429, 0.429, 0.429, | |
0.571, 0.571, 0.571, | |
0.714, 0.714, 0.714, | |
0.857, 0.857, 0.857 | |
] | |
).astype(np.float32) | |
color_list = color_list.reshape((-1, 3)) * 255 | |
if not rgb: | |
color_list = color_list[:, ::-1] | |
return color_list | |
color_list = colormap() | |
color_list = color_list.astype('uint8').tolist() | |
def vis_add_mask(image, mask, color, alpha): | |
color = np.array(color_list[color]) | |
mask = mask > 0.5 | |
image[mask] = image[mask] * (1-alpha) + color * alpha | |
return image.astype('uint8') | |
def point_painter(input_image, input_points, point_color=5, point_alpha=0.9, point_radius=15, contour_color=2, contour_width=5): | |
h, w = input_image.shape[:2] | |
point_mask = np.zeros((h, w)).astype('uint8') | |
for point in input_points: | |
point_mask[point[1], point[0]] = 1 | |
kernel = cv2.getStructuringElement(2, (point_radius, point_radius)) | |
point_mask = cv2.dilate(point_mask, kernel) | |
contour_radius = (contour_width - 1) // 2 | |
dist_transform_fore = cv2.distanceTransform(point_mask, cv2.DIST_L2, 3) | |
dist_transform_back = cv2.distanceTransform(1-point_mask, cv2.DIST_L2, 3) | |
dist_map = dist_transform_fore - dist_transform_back | |
# ...:::!!!:::... | |
contour_radius += 2 | |
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius)) | |
contour_mask = contour_mask / np.max(contour_mask) | |
contour_mask[contour_mask>0.5] = 1. | |
# paint mask | |
painted_image = vis_add_mask(input_image.copy(), point_mask, point_color, point_alpha) | |
# paint contour | |
painted_image = vis_add_mask(painted_image.copy(), 1-contour_mask, contour_color, 1) | |
return painted_image | |
def mask_painter(input_image, input_mask, mask_color=5, mask_alpha=0.7, contour_color=1, contour_width=3): | |
assert input_image.shape[:2] == input_mask.shape, 'different shape between image and mask' | |
# 0: background, 1: foreground | |
mask = np.clip(input_mask, 0, 1) | |
contour_radius = (contour_width - 1) // 2 | |
dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3) | |
dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3) | |
dist_map = dist_transform_fore - dist_transform_back | |
# ...:::!!!:::... | |
contour_radius += 2 | |
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius)) | |
contour_mask = contour_mask / np.max(contour_mask) | |
contour_mask[contour_mask>0.5] = 1. | |
# paint mask | |
painted_image = vis_add_mask(input_image.copy(), mask.copy(), mask_color, mask_alpha) | |
# paint contour | |
painted_image = vis_add_mask(painted_image.copy(), 1-contour_mask, contour_color, 1) | |
return painted_image | |
def background_remover(input_image, input_mask): | |
""" | |
input_image: H, W, 3, np.array | |
input_mask: H, W, np.array | |
image_wo_background: PIL.Image | |
""" | |
assert input_image.shape[:2] == input_mask.shape, 'different shape between image and mask' | |
# 0: background, 1: foreground | |
mask = np.expand_dims(np.clip(input_mask, 0, 1), axis=2)*255 | |
image_wo_background = np.concatenate([input_image, mask], axis=2) # H, W, 4 | |
image_wo_background = Image.fromarray(image_wo_background).convert('RGBA') | |
return image_wo_background | |
if __name__ == '__main__': | |
input_image = np.array(Image.open('images/painter_input_image.jpg').convert('RGB')) | |
input_mask = np.array(Image.open('images/painter_input_mask.jpg').convert('P')) | |
# example of mask painter | |
mask_color = 3 | |
mask_alpha = 0.7 | |
contour_color = 1 | |
contour_width = 5 | |
# save | |
painted_image = Image.fromarray(input_image) | |
painted_image.save('images/original.png') | |
painted_image = mask_painter(input_image, input_mask, mask_color, mask_alpha, contour_color, contour_width) | |
# save | |
painted_image = Image.fromarray(input_image) | |
painted_image.save('images/original1.png') | |
# example of point painter | |
input_image = np.array(Image.open('images/painter_input_image.jpg').convert('RGB')) | |
input_points = np.array([[500, 375], [70, 600]]) # x, y | |
point_color = 5 | |
point_alpha = 0.9 | |
point_radius = 15 | |
contour_color = 2 | |
contour_width = 5 | |
painted_image_1 = point_painter(input_image, input_points, point_color, point_alpha, point_radius, contour_color, contour_width) | |
# save | |
painted_image = Image.fromarray(painted_image_1) | |
painted_image.save('images/point_painter_1.png') | |
input_image = np.array(Image.open('images/painter_input_image.jpg').convert('RGB')) | |
painted_image_2 = point_painter(input_image, input_points, point_color=9, point_radius=20, contour_color=29) | |
# save | |
painted_image = Image.fromarray(painted_image_2) | |
painted_image.save('images/point_painter_2.png') | |
# example of background remover | |
input_image = np.array(Image.open('images/original.png').convert('RGB')) | |
image_wo_background = background_remover(input_image, input_mask) # return PIL.Image | |
image_wo_background.save('images/image_wo_background.png') | |