Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from collections import defaultdict | |
def dice_loss(input_mask, cls_gt): | |
num_objects = input_mask.shape[1] | |
losses = [] | |
for i in range(num_objects): | |
mask = input_mask[:,i].flatten(start_dim=1) | |
# background not in mask, so we add one to cls_gt | |
gt = (cls_gt==(i+1)).float().flatten(start_dim=1) | |
numerator = 2 * (mask * gt).sum(-1) | |
denominator = mask.sum(-1) + gt.sum(-1) | |
loss = 1 - (numerator + 1) / (denominator + 1) | |
losses.append(loss) | |
return torch.cat(losses).mean() | |
# https://stackoverflow.com/questions/63735255/how-do-i-compute-bootstrapped-cross-entropy-loss-in-pytorch | |
class BootstrappedCE(nn.Module): | |
def __init__(self, start_warm, end_warm, top_p=0.15): | |
super().__init__() | |
self.start_warm = start_warm | |
self.end_warm = end_warm | |
self.top_p = top_p | |
def forward(self, input, target, it): | |
if it < self.start_warm: | |
return F.cross_entropy(input, target), 1.0 | |
raw_loss = F.cross_entropy(input, target, reduction='none').view(-1) | |
num_pixels = raw_loss.numel() | |
if it > self.end_warm: | |
this_p = self.top_p | |
else: | |
this_p = self.top_p + (1-self.top_p)*((self.end_warm-it)/(self.end_warm-self.start_warm)) | |
loss, _ = torch.topk(raw_loss, int(num_pixels * this_p), sorted=False) | |
return loss.mean(), this_p | |
class LossComputer: | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.bce = BootstrappedCE(config['start_warm'], config['end_warm']) | |
def compute(self, data, num_objects, it): | |
losses = defaultdict(int) | |
b, t = data['rgb'].shape[:2] | |
losses['total_loss'] = 0 | |
for ti in range(1, t): | |
for bi in range(b): | |
loss, p = self.bce(data[f'logits_{ti}'][bi:bi+1, :num_objects[bi]+1], data['cls_gt'][bi:bi+1,ti,0], it) | |
losses['p'] += p / b / (t-1) | |
losses[f'ce_loss_{ti}'] += loss / b | |
losses['total_loss'] += losses['ce_loss_%d'%ti] | |
losses[f'dice_loss_{ti}'] = dice_loss(data[f'masks_{ti}'], data['cls_gt'][:,ti,0]) | |
losses['total_loss'] += losses[f'dice_loss_{ti}'] | |
return losses | |