This-and-That / train_code /train_svd.py
HikariDawn777's picture
feat: initial push
59b2a81
raw
history blame
39.8 kB
#!/usr/bin/env python
'''
This file is to train stable video diffusion by my personal implementation which is based on diffusers' training example code.
'''
import argparse
import logging
import math
import os, sys
import time
import random
import shutil
import warnings
import cv2
from PIL import Image
from einops import rearrange, repeat
from pathlib import Path
from omegaconf import OmegaConf
import imageio
import accelerate
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import RandomSampler
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
import diffusers
from diffusers import (
AutoencoderKLTemporalDecoder,
DDPMScheduler,
)
from diffusers.training_utils import EMAModel, compute_snr
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available, load_image, export_to_video
from diffusers.utils.import_utils import is_xformers_available
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils.torch_utils import randn_tensor
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
if is_wandb_available():
import wandb
# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from svd.pipeline_stable_video_diffusion import StableVideoDiffusionPipeline
from svd.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from data_loader.video_dataset import Video_Dataset, get_video_frames, tokenize_captions
from utils.img_utils import resize_with_antialiasing
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
# check_min_version("0.25.0.dev0")
logger = get_logger(__name__)
warnings.filterwarnings('ignore')
###################################################################################################################################################
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
parser.add_argument(
"--config_path",
type=str,
default="config/train_image2video.yaml",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
args = parser.parse_args()
return args
def log_validation(vae, unet, image_encoder, text_encoder, tokenizer, config, accelerator, weight_dtype, step,
parent_store_folder = None, force_close_flip = False, use_ambiguous_prompt=False):
# This function will also be used in other files
print("Running validation... ")
# Init
validation_source_folder = config["validation_img_folder"]
# Init the pipeline
pipeline = StableVideoDiffusionPipeline.from_pretrained(
config["pretrained_model_name_or_path"],
vae = accelerator.unwrap_model(vae),
image_encoder = accelerator.unwrap_model(image_encoder),
unet = accelerator.unwrap_model(unet),
revision = None, # Set None directly now
torch_dtype = weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# Process all image in the folder
frames_collection = []
for image_name in sorted(os.listdir(validation_source_folder)):
if accelerator.is_main_process:
if parent_store_folder is None:
validation_store_folder = os.path.join(config["validation_store_folder"] + "_" + config["scheduler"], "step_" + str(step), image_name)
else:
validation_store_folder = os.path.join(parent_store_folder, image_name)
if os.path.exists(validation_store_folder):
shutil.rmtree(validation_store_folder)
os.makedirs(validation_store_folder)
image_path = os.path.join(validation_source_folder, image_name, 'im_0.jpg')
ref_image = load_image(image_path)
ref_image = ref_image.resize((config["width"], config["height"]))
# Decide the motion score in SVD (mostly what we use is fix value now)
if config["motion_bucket_id"] is None:
raise NotImplementedError("We need a fixed motion_bucket_id in the config")
else:
reflected_motion_bucket_id = config["motion_bucket_id"]
print("Inference Motion Bucket ID is ", reflected_motion_bucket_id)
# Prepare text prompt
if config["use_text"]:
# Read the file
file_path = os.path.join(validation_source_folder, image_name, "lang.txt")
file = open(file_path, 'r')
prompt = file.readlines()[0] # Only read the first line
if use_ambiguous_prompt:
prompt = prompt.split(" ")[0] + " this to there"
print("We are creating ambiguous prompt, which is: ", prompt)
else:
prompt = ""
# Use the same tokenize process as the dataset preparation stage
tokenized_prompt = tokenize_captions(prompt, tokenizer, config, is_train=False).unsqueeze(0).to(accelerator.device) # Use unsqueeze to expand dim
# Store the prompt for the sanity check
f = open(os.path.join(validation_store_folder, "lang_cond.txt"), "a")
f.write(prompt)
f.close()
# Flip the image by chance (it is needed to check whether there is any object position words [left|right] in the prompt text)
flip = False
if not force_close_flip: # force_close_flip is True in testing time; else, we cannot match in the same standard
if random.random() < config["flip_aug_prob"]:
if config["use_text"]:
if prompt.find("left") == -1 and prompt.find("right") == -1: # Cannot have position word, like left and right (up and down is ok)
flip = True
else:
flip = True
if flip:
print("Use flip in validation!")
ref_image = ref_image.transpose(Image.FLIP_LEFT_RIGHT)
# Call the model for inference
with torch.autocast("cuda"):
frames = pipeline(
ref_image,
tokenized_prompt,
config["use_text"],
text_encoder,
height = config["height"],
width = config["width"],
num_frames = config["video_seq_length"],
num_inference_steps = config["num_inference_steps"],
decode_chunk_size = 8,
motion_bucket_id = reflected_motion_bucket_id,
fps = 7,
noise_aug_strength = config["inference_noise_aug_strength"],
).frames[0]
# Store the frames
# breakpoint()
for idx, frame in enumerate(frames):
frame.save(os.path.join(validation_store_folder, str(idx)+".png"))
imageio.mimsave(os.path.join(validation_store_folder, 'combined.gif'), frames) # gif storage quality is not high, recommend to check png images
frames_collection.append(frames)
# Cleaning process
del pipeline
torch.cuda.empty_cache()
return frames_collection # Return resuly based on the need
def tensor_to_vae_latent(inputs, vae):
video_length = inputs.shape[1]
inputs = rearrange(inputs, "b f c h w -> (b f) c h w")
latents = vae.encode(inputs).latent_dist.mode()
latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length) # Use f or b to rearrage should have the same effect
latents = latents * vae.config.scaling_factor
return latents
def import_pretrained_text_encoder(pretrained_model_name_or_path: str, revision: str):
''' Import Text encoder information
'''
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
else: # No other cases will be considerred
raise ValueError(f"{model_class} is not supported.")
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
"""Draws samples from an lognormal distribution."""
u = torch.rand(shape, dtype=dtype, device=device) * (1 - 2e-7) + 1e-7
return torch.distributions.Normal(loc, scale).icdf(u).exp()
def get_add_time_ids(
unet_config,
expected_add_embed_dim,
fps,
motion_bucket_id,
noise_aug_strength,
dtype,
batch_size,
num_videos_per_prompt,
):
# Construct Basic add_time_ids items
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
passed_add_embed_dim = unet_config.addition_time_embed_dim * len(add_time_ids)
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
return add_time_ids
####################################################################################################################################################################
def main(config):
# Read Config Setting
resume_from_checkpoint = config["resume_from_checkpoint"]
output_dir = config["output_dir"]
logging_name = config["logging_name"]
mixed_precision = config["mixed_precision"]
report_to = config["report_to"]
pretrained_model_name_or_path = config["pretrained_model_name_or_path"]
pretrained_tokenizer_name_or_path = config["pretrained_tokenizer_name_or_path"]
gradient_checkpointing = config["gradient_checkpointing"]
learning_rate = config["learning_rate"]
adam_beta1 = config["adam_beta1"]
adam_beta2 = config["adam_beta2"]
adam_weight_decay = config["adam_weight_decay"]
adam_epsilon = config["adam_epsilon"]
train_batch_size = config["train_batch_size"]
dataloader_num_workers = config["dataloader_num_workers"]
gradient_accumulation_steps = config["gradient_accumulation_steps"]
num_train_iters = config["num_train_iters"]
lr_warmup_steps = config["lr_warmup_steps"]
checkpointing_steps = config["checkpointing_steps"]
process_fps = config["process_fps"]
train_noise_aug_strength = config["train_noise_aug_strength"]
use_8bit_adam = config["use_8bit_adam"]
scale_lr = config["scale_lr"]
conditioning_dropout_prob = config["conditioning_dropout_prob"]
checkpoints_total_limit = config["checkpoints_total_limit"]
validation_step = config["validation_step"]
partial_finetune = config['partial_finetune']
# Default Setting
revision = None
variant = "fp16"
lr_scheduler = "constant"
max_grad_norm = 1.0
tracker_project_name = "img2video"
num_videos_per_prompt = 1
seed = 42
# No CFG in training now
# Define the accelerator
logging_dir = Path(output_dir, logging_name)
accelerator_project_config = ProjectConfiguration(project_dir=output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps = gradient_accumulation_steps,
mixed_precision = mixed_precision,
log_with = report_to,
project_config = accelerator_project_config,
)
generator = torch.Generator(device=accelerator.device).manual_seed(seed)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# Handle the repository creation
if accelerator.is_main_process and resume_from_checkpoint != "latest": # For the latest checkpoint version, we don't need to delete our folders
# Validation file
validation_store_folder = config["validation_store_folder"] + "_" + config["scheduler"]
print("We will remove ", validation_store_folder)
if os.path.exists(validation_store_folder):
archive_name = validation_store_folder + "_archive"
if os.path.exists(archive_name):
shutil.rmtree(archive_name)
print("We will move to archive ", archive_name)
os.rename(validation_store_folder, archive_name)
os.makedirs(validation_store_folder)
# Output Dir
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
# os.makedirs(output_dir, exist_ok=True)
# Log
if os.path.exists("runs"):
shutil.rmtree("runs")
# Copy the config to here
os.system(" cp config/train_image2video.yaml " + validation_store_folder + "/")
# Load All Module Needed
feature_extractor = CLIPImageProcessor.from_pretrained(
pretrained_model_name_or_path, subfolder="feature_extractor", revision=revision
) # This instance has now weight, they are just seeting file
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
pretrained_model_name_or_path, subfolder="image_encoder", revision=revision, variant=variant
)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
pretrained_model_name_or_path, subfolder="vae", revision=revision, variant=variant
)
if config["load_unet_path"] != None:
print("We will load UNet from ", config["load_unet_path"])
unet = UNetSpatioTemporalConditionModel.from_pretrained(
config["load_unet_path"],
subfolder = "unet",
low_cpu_mem_usage = True,
) # For the variant, we don't have fp16 version, so we will read from fp32
else:
print("We will only use SVD pretrained UNet")
unet = UNetSpatioTemporalConditionModel.from_pretrained(
pretrained_model_name_or_path,
subfolder = "unet",
low_cpu_mem_usage = True,
variant = variant,
)
# Prepare for the tokenizer if use text
tokenizer = AutoTokenizer.from_pretrained(
pretrained_tokenizer_name_or_path,
subfolder = "tokenizer",
revision = revision,
use_fast = False,
)
if config["use_text"]:
# Clip Text Encoder
text_encoder_cls = import_pretrained_text_encoder(pretrained_tokenizer_name_or_path, revision)
text_encoder = text_encoder_cls.from_pretrained(
pretrained_tokenizer_name_or_path, subfolder = "text_encoder", revision = revision, variant = variant
)
else:
text_encoder = None
# Store the config due to the disappearance after accelerator prepare (This is written to handle some unknown phenomenon)
unet_config = unet.config
expected_add_embed_dim = unet.add_embedding.linear_1.in_features
# Freeze vae + feature_extractor + image_encoder, but set unet to trainable
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
unet.requires_grad_(False) # Will switch back to train mode later on
if config["use_text"]:
text_encoder.requires_grad_(False) # All set with no grad needed (like VAE) follow other T2I papers
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move vae + image_encoder to gpu and cast to weight_dtype
vae.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
# unet.to(accelerator.device, dtype=weight_dtype)
if config["use_text"]:
text_encoder.to(accelerator.device, dtype=weight_dtype)
# Acceleration: `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "unet"))
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
for i in range(len(models)):
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = UNetSpatioTemporalConditionModel.from_pretrained(input_dir, subfolder="unet")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
################################ Make Training dataset ###############################
train_dataset = Video_Dataset(config, device = accelerator.device, tokenizer=tokenizer)
sampler = RandomSampler(train_dataset)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
sampler = sampler,
batch_size = train_batch_size,
num_workers = dataloader_num_workers * accelerator.num_processes,
)
#######################################################################################
####################################### Optimizer Setting #####################################################################
if scale_lr:
learning_rate = (
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
)
# 8bit adam to save more memory (Usally we need this to save the memory)
if use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
# Switch back to unet in training mode
unet.requires_grad_(True)
############################## For partial fine-tune setting ##############################
parameters_list = []
for name, param in unet.named_parameters():
if partial_finetune: # The partial finetune we use is to only train attn layers, which will be ~190M params (TODO:needs to check later for exact value)
# Full Spatial: .transformer_blocks. && spatial_
# Attn + All emb: attn && emb
if name.find("attn") != -1 or name.find("emb") != -1: # Only block the spatial Transformer
parameters_list.append(param)
param.requires_grad = True
else:
param.requires_grad = False
else:
parameters_list.append(param)
param.requires_grad = True
# Double check what will be trained
total_params_for_training = 0
# if os.path.exists("param_lists.txt"):
# os.remove("param_lists.txt")
# file1 = open("param_lists.txt","a")
for name, param in unet.named_parameters():
# file1.write(name + "\n")
if param.requires_grad:
total_params_for_training += param.numel()
print(name + " requires grad update")
print("Total parameter that will be trained has ", total_params_for_training)
##########################################################################################
# Optimizer creation
optimizer = optimizer_cls(
parameters_list,
lr = learning_rate,
betas = (adam_beta1, adam_beta2),
weight_decay = adam_weight_decay,
eps = adam_epsilon,
)
# Scheduler and Training steps
dataset_length = len(train_dataset)
print("Dataset length read from the train side is ", dataset_length)
num_update_steps_per_epoch = math.ceil(dataset_length / gradient_accumulation_steps)
max_train_steps = num_train_iters * train_batch_size
# Learning Rate Scheduler (we all use constant)
lr_scheduler = get_scheduler(
"constant",
optimizer = optimizer,
num_warmup_steps = lr_warmup_steps * accelerator.num_processes,
num_training_steps = max_train_steps * accelerator.num_processes,
num_cycles = 1,
power = 1.0,
)
#####################################################################################################################################
# Prepare everything with our `accelerator`.
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# We need to RECALCULATE our total training steps as the size of the training dataloader may have changed.
print("accelerator.num_processes is ", accelerator.num_processes)
print("num_train_iters is ", num_train_iters)
num_train_epochs = math.ceil(num_train_iters * accelerator.num_processes * gradient_accumulation_steps / dataset_length)
print("num_train_epochs is ", num_train_epochs)
# We need to initialize the trackers we use, and also store our configuration.
if accelerator.is_main_process: # Only on the main process!
tracker_config = dict(vars(args))
accelerator.init_trackers(tracker_project_name, tracker_config)
# Train!
logger.info("***** Running training *****")
logger.info(f" Dataset Length = {dataset_length}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_train_steps}")
# Load the Closest / Best weight
global_step = 0 # Catch the current iteration
first_epoch = 0
if resume_from_checkpoint:
if resume_from_checkpoint != "latest":
path = os.path.basename(resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
print("We will resume the latest weight ", path)
if path is None: # Don't resume
accelerator.print(
f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run."
)
resume_from_checkpoint = None
initial_global_step = 0
else: # Resume from the closest checkpoint
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
if accelerator.is_main_process:
print("Initial Learning rate is ", optimizer.param_groups[0]['lr'])
print("global_step will start from ", global_step)
progress_bar = tqdm(
range(initial_global_step, max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
# Prepare tensorboard log
writer = SummaryWriter()
######################################################### Auxiliary Function #################################################################
def encode_clip(pixel_values, prompt):
''' Encoder hidden states input source
pixel_values: first frame pixel information
prompt: language prompt with takenized
'''
########################################## Prepare the Text Embedding #####################################################
# pixel_values is in the range [-1, 1]
pixel_values = resize_with_antialiasing(pixel_values, (224, 224))
pixel_values = (pixel_values + 1.0) / 2.0 # [-1, 1] -> [0, 1]
# Normalize the image with for CLIP input
pixel_values = feature_extractor(
images=pixel_values,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values
# The following is the same as _encode_image in SVD pipeline
pixel_values = pixel_values.to(device=accelerator.device, dtype=weight_dtype)
image_embeddings = image_encoder(pixel_values).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
encoder_hidden_states = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
#############################################################################################################################
########################################## Prepare the Text embedding if needed #############################################
if config["use_text"]:
text_embeddings = text_encoder(prompt)[0]
# Concat two embeddings together on dim 1
encoder_hidden_states = torch.cat((text_embeddings, encoder_hidden_states), dim=1)
# Layer norm on the last dim
layer_norm = nn.LayerNorm((78, 1024)).to(device=accelerator.device, dtype=weight_dtype)
encoder_hidden_states_norm = layer_norm(encoder_hidden_states)
# Return
return encoder_hidden_states_norm
else: # Just return back default on
return encoder_hidden_states
#############################################################################################################################
####################################################################################################################################################
############################################################################################################################
# For the training, we mimic the code from T2I in diffusers
for epoch in range(first_epoch, num_train_epochs):
unet.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# batch is a torch tensor with range of [-1, 1] but no other pre-porcessing
video_frames = batch["video_frames"].to(weight_dtype).to(accelerator.device, non_blocking=True)
reflected_motion_bucket_id = batch["reflected_motion_bucket_id"]
prompt = batch["prompt"]
# Images to VAE latent space
latents = tensor_to_vae_latent(video_frames, vae)
##################################### Add Noise ########################################
bsz, num_frames = latents.shape[:2]
# Encode the first frame
conditional_pixel_values = video_frames[:, 0, :, :, :] # First frame
# Following AnimateSomething, we use constant to repace cond_sigmas
conditional_pixel_values = conditional_pixel_values + torch.randn_like(conditional_pixel_values) * train_noise_aug_strength
conditional_latents = vae.encode(conditional_pixel_values).latent_dist.mode() # mode() returns mean value no std influence
conditional_latents = repeat(conditional_latents, 'b c h w->b f c h w', f=num_frames) # copied across the frame axis to be the same shape as noise
# Add noise to the latents according to the noise magnitude at each timestep
# This is the forward diffusion process
sigmas = rand_log_normal(shape=[bsz,], loc=config["noise_mean"], scale=config["noise_std"]).to(latents.device)
sigmas = sigmas[:, None, None, None, None]
noisy_latents = latents + torch.randn_like(latents) * sigmas
inp_noisy_latents = noisy_latents / ((sigmas**2 + 1) ** 0.5)
# For the encoder hidden states based on the first frame and prompt
encoder_hidden_states = encode_clip(video_frames[:, 0, :, :, :].float(), prompt) # First Frame + Text Prompt
# Conditioning dropout to support classifier-free guidance during inference. For more details
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800 (InstructPix2Pix).
if conditioning_dropout_prob != 0:
random_p = torch.rand(bsz, device=latents.device, generator=generator)
# Sample masks for the edit prompts.
prompt_mask = random_p < 2 * conditioning_dropout_prob
prompt_mask = prompt_mask.reshape(bsz, 1, 1)
# Final text conditioning.
null_conditioning = torch.zeros_like(encoder_hidden_states)
encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states)
# Sample masks for the original images.
image_mask_dtype = conditional_latents.dtype
image_mask = 1 - ((random_p >= conditioning_dropout_prob).to(image_mask_dtype) * (random_p < 3 * conditioning_dropout_prob).to(image_mask_dtype))
image_mask = image_mask.reshape(bsz, 1, 1, 1)
# Final image conditioning.
conditional_latents = image_mask * conditional_latents
# Concatenate the `conditional_latents` with the `noisy_latents`.
inp_noisy_latents = torch.cat([inp_noisy_latents, conditional_latents], dim=2)
# GT noise
target = latents
##########################################################################################
################################ Other Embedding and Conditioning ###################################
reflected_motion_bucket_id = torch.sum(reflected_motion_bucket_id)/len(reflected_motion_bucket_id)
reflected_motion_bucket_id = int(reflected_motion_bucket_id.cpu().detach().numpy())
# print("Training reflected_motion_bucket_id is ", reflected_motion_bucket_id)
added_time_ids = get_add_time_ids(
unet_config,
expected_add_embed_dim,
process_fps,
reflected_motion_bucket_id,
train_noise_aug_strength,
weight_dtype,
train_batch_size,
num_videos_per_prompt,
) # The same as SVD pipeline's _get_add_time_ids
added_time_ids = added_time_ids.to(accelerator.device)
timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]).to(accelerator.device)
#####################################################################################################
###################################### Predict Noise ######################################
model_pred = unet(
inp_noisy_latents,
timesteps,
encoder_hidden_states,
added_time_ids = added_time_ids
).sample
# Denoise the latents
c_out = -sigmas / ((sigmas**2 + 1)**0.5)
c_skip = 1 / (sigmas**2 + 1)
denoised_latents = model_pred * c_out + c_skip * noisy_latents
weighing = (1 + sigmas ** 2) * (sigmas**-2.0)
##########################################################################################
############################### Calculate Loss and Update Optimizer #######################
# MSE loss
loss = torch.mean(
( weighing.float() * (denoised_latents.float() - target.float())**2 ).reshape(target.shape[0], -1),
dim=1,
)
loss = loss.mean()
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
train_loss += avg_loss.item() / gradient_accumulation_steps
# Update Tensorboard
writer.add_scalar('Loss/train-Loss-Step', avg_loss, global_step)
# Backpropagate
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
##########################################################################################
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
########################################## Checkpoints #########################################
if global_step != 0 and global_step % checkpointing_steps == 0:
if accelerator.is_main_process:
start = time.time()
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if checkpoints_total_limit is not None:
checkpoints = os.listdir(output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= checkpoints_total_limit:
num_to_remove = len(checkpoints) - checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
print("Save time use " + str(time.time() - start) + " s")
########################################################################################################
# Update Log
logs = {"step_loss": loss.detach().item(), "lr": optimizer.param_groups[0]['lr']}
progress_bar.set_postfix(**logs)
##################################### Validation per XXX iterations #######################################
if accelerator.is_main_process:
if global_step % validation_step == 0: # Fixed 100 steps to validate
if config["validation_img_folder"] is not None:
log_validation(
vae,
unet,
image_encoder,
text_encoder,
tokenizer,
config,
accelerator,
weight_dtype,
global_step,
use_ambiguous_prompt = config["mix_ambiguous"],
)
###############################################################################################################
# Update Steps and Break if needed
global_step += 1
if global_step >= max_train_steps:
break
############################################################################################################################
if __name__ == "__main__":
args = parse_args()
config = OmegaConf.load(args.config_path)
main(config)