Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
''' | |
This is a ControlNet for sptio temporal unet (SVD) | |
''' | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import os, sys | |
import random | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from diffusers import AutoencoderKLTemporalDecoder | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import FromOriginalControlnetMixin | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.models.attention_processor import ( | |
ADDED_KV_ATTENTION_PROCESSORS, | |
CROSS_ATTENTION_PROCESSORS, | |
AttentionProcessor, | |
AttnAddedKVProcessor, | |
AttnProcessor, | |
) | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.models.modeling_utils import ModelMixin | |
# Import files from the local folder | |
root_path = os.path.abspath('.') | |
sys.path.append(root_path) | |
from svd.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel | |
from svd.diffusion_arch.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def zero_module(module): | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |
class ControlNetOutput(BaseOutput): | |
""" | |
The output of [`ControlNetModel`]. | |
Args: | |
down_block_res_samples (`tuple[torch.Tensor]`): | |
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should | |
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be | |
used to condition the original UNet's downsampling activations. | |
mid_down_block_re_sample (`torch.Tensor`): | |
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape | |
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. | |
Output can be used to condition the original UNet's middle block activation. | |
""" | |
down_block_res_samples: Tuple[torch.Tensor] | |
mid_block_res_sample: torch.Tensor | |
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin): | |
""" | |
A ControlNet model. | |
Args: | |
in_channels (`int`, defaults to 4): | |
The number of channels in the input sample. | |
flip_sin_to_cos (`bool`, defaults to `True`): | |
Whether to flip the sin to cos in the time embedding. | |
freq_shift (`int`, defaults to 0): | |
The frequency shift to apply to the time embedding. | |
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
The tuple of downsample blocks to use. | |
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): | |
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, defaults to 2): | |
The number of layers per block. | |
downsample_padding (`int`, defaults to 1): | |
The padding to use for the downsampling convolution. | |
mid_block_scale_factor (`float`, defaults to 1): | |
The scale factor to use for the mid block. | |
act_fn (`str`, defaults to "silu"): | |
The activation function to use. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use for the normalization. If None, normalization and activation layers is skipped | |
in post-processing. | |
norm_eps (`float`, defaults to 1e-5): | |
The epsilon to use for the normalization. | |
cross_attention_dim (`int`, defaults to 1280): | |
The dimension of the cross attention features. | |
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): | |
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], | |
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. | |
encoder_hid_dim (`int`, *optional*, defaults to None): | |
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` | |
dimension to `cross_attention_dim`. | |
encoder_hid_dim_type (`str`, *optional*, defaults to `None`): | |
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text | |
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. | |
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): | |
The dimension of the attention heads. | |
use_linear_projection (`bool`, defaults to `False`): | |
class_embed_type (`str`, *optional*, defaults to `None`): | |
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, | |
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. | |
addition_embed_type (`str`, *optional*, defaults to `None`): | |
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or | |
"text". "text" will use the `TextTimeEmbedding` layer. | |
num_class_embeds (`int`, *optional*, defaults to 0): | |
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing | |
class conditioning with `class_embed_type` equal to `None`. | |
upcast_attention (`bool`, defaults to `False`): | |
resnet_time_scale_shift (`str`, defaults to `"default"`): | |
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. | |
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): | |
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when | |
`class_embed_type="projection"`. | |
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): | |
The channel order of conditional image. Will convert to `rgb` if it's `bgr`. | |
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): | |
The tuple of output channel for each block in the `conditioning_embedding` layer. | |
global_pool_conditions (`bool`, defaults to `False`): | |
TODO(Patrick) - unused parameter. | |
addition_embed_type_num_heads (`int`, defaults to 64): | |
The number of heads to use for the `TextTimeEmbedding` layer. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 8, | |
conditioning_channels: int = 3, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str, ...] = ( | |
"CrossAttnDownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
"DownBlockSpatioTemporal", | |
), | |
mid_block_type: Optional[str] = "UNetMidBlockSpatioTemporal", | |
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), | |
addition_time_embed_dim: int = 256, | |
layers_per_block: int = 2, | |
act_fn: str = "silu", | |
cross_attention_dim: int = 1024, | |
projection_class_embeddings_input_dim: Optional[int] = 768, | |
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), | |
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20), # This is modified to SVD config setting for the default case | |
encoder_hid_dim: Optional[int] = None, | |
encoder_hid_dim_type: Optional[str] = None, | |
controlnet_conditioning_channel_order = 'rgb', | |
): | |
super().__init__() | |
self.controlnet_conditioning_channel_order = controlnet_conditioning_channel_order | |
# Check inputs | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
) | |
########################## First convolution channel for sample (noise) ########################## | |
conv_in_kernel = 3 | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
self.conv_in_concat = zero_module(nn.Conv2d( | |
12, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
)) # Input is 12 channels (8 + 4) right now | |
########################## Time embedding and so on ########################## | |
time_embed_dim = block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) # defualt flip_sin_to_cos True | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, | |
time_embed_dim, | |
act_fn=act_fn, | |
) | |
# Additional time embedding for other purpose | |
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0) # This will include hyperparameter like fps, motion_bucket_id, noise_aug_strength | |
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
if encoder_hid_dim is None and encoder_hid_dim_type is not None: | |
raise ValueError( | |
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." | |
) | |
############################# Down and Mid Blocks Init ############################# | |
# Init ModuleList and prepare information needed | |
self.down_blocks = nn.ModuleList([]) | |
output_channel = block_out_channels[0] | |
# Check instance | |
if isinstance(num_attention_heads, int): | |
num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
if isinstance(cross_attention_dim, int): | |
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
if isinstance(layers_per_block, int): | |
layers_per_block = [layers_per_block] * len(down_block_types) | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
blocks_time_embed_dim = time_embed_dim | |
# ControlNet Module!!!!! | |
self.controlnet_down_blocks = nn.ModuleList([]) | |
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) # Zero Convolution | |
self.controlnet_down_blocks.append(controlnet_block) | |
# Down block init one by one | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block[i], | |
transformer_layers_per_block=transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=1e-5, | |
cross_attention_dim=cross_attention_dim[i], | |
num_attention_heads=num_attention_heads[i], | |
resnet_act_fn="silu", | |
) | |
self.down_blocks.append(down_block) | |
# ControlNet Module !!!! | |
for _ in range(layers_per_block[0]): # Loop 2 times here | |
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_down_blocks.append(controlnet_block) | |
if not is_final_block: # Loop only once | |
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_down_blocks.append(controlnet_block) | |
# Mid block | |
mid_block_channel = block_out_channels[-1] | |
# ControlNet Module !!!! | |
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) | |
controlnet_block = zero_module(controlnet_block) | |
self.controlnet_mid_block = controlnet_block | |
if mid_block_type == "UNetMidBlockSpatioTemporal": | |
self.mid_block = UNetMidBlockSpatioTemporal( | |
block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
transformer_layers_per_block=transformer_layers_per_block[-1], | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
) | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
def from_unet( | |
cls, | |
unet: UNetSpatioTemporalConditionModel, | |
conditioning_channels: int = 3, | |
load_weights_from_unet: bool = True, | |
): | |
r""" | |
Instantiate a [`ControlNetModel`] from [`UNetSpatioTemporalConditionModel`]. | |
Parameters: | |
unet (`UNetSpatioTemporalConditionModel`): | |
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied | |
where applicable. | |
load_weights_from_unet (bool): | |
Whether we used unet as trainable copy (Should be True in default) | |
""" | |
controlnet = cls(conditioning_channels=conditioning_channels) | |
if load_weights_from_unet: | |
# controlnet.conv_in.load_state_dict(unet.conv_in.state_dict()) # Won't load this conv_in now, we will replace it with another zero conv | |
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict()) | |
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) | |
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict()) | |
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict()) | |
return controlnet | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors( | |
name: str, | |
module: torch.nn.Module, | |
processors: Dict[str, AttentionProcessor], | |
): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnProcessor() | |
else: | |
raise ValueError( | |
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
) | |
self.set_attn_processor(processor) | |
def _set_gradient_checkpointing(self, module, value: bool = False) -> None: | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
added_time_ids: torch.Tensor, | |
added_positions: torch.Tensor = None, | |
controlnet_cond: torch.FloatTensor = None, | |
conditioning_scale: float = 1.0, | |
inner_conditioning_scale: float = 1.0, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
guess_mode: bool = False, | |
return_dict: bool = True, | |
) -> Union[ControlNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]: | |
""" | |
The [`ControlNetModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor. | |
timestep (`Union[torch.Tensor, float, int]`): | |
The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.Tensor`): | |
The encoder hidden states. | |
controlnet_cond (`torch.FloatTensor`): | |
The conditional input tensor of shape `(batch_size, sequence_length, 4, hidden_size)` which is already encoded in VAE. | |
conditioning_scale (`float`, defaults to `1.0`): | |
The scale factor for ControlNet outputs. | |
class_labels (`torch.Tensor`, *optional*, defaults to `None`): | |
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. | |
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): | |
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the | |
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep | |
embeddings. | |
attention_mask (`torch.Tensor`, *optional*, defaults to `None`): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
added_cond_kwargs (`dict`): | |
Additional conditions for the Stable Diffusion XL UNet. | |
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): | |
A kwargs dictionary that if specified is passed along to the `AttnProcessor`. | |
guess_mode (`bool`, defaults to `False`): | |
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if | |
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. | |
return_dict (`bool`, defaults to `True`): | |
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.controlnet.ControlNetOutput`] **or** `tuple`: | |
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is | |
returned where the first element is the sample tensor. | |
""" | |
# check channel order | |
channel_order = self.controlnet_conditioning_channel_order | |
# if channel_order == "rgb": | |
# # in rgb order by default | |
# ... | |
# elif channel_order == "bgr": | |
# controlnet_cond = torch.flip(controlnet_cond, dims=[1]) | |
# else: | |
# raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") | |
# prepare attention_mask | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
batch_size, num_frames = sample.shape[:2] # Take the classifier guidance also as an input in batch | |
timesteps = timesteps.expand(batch_size) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb) # No more timestep_cond because usually this is None | |
# motion score + fps + aug strength embeds | |
time_embeds = self.add_time_proj(added_time_ids.flatten()) | |
time_embeds = time_embeds.reshape((batch_size, -1)) | |
time_embeds = time_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(time_embeds) | |
# Wrap up | |
emb = emb + aug_emb | |
sample = sample.flatten(0, 1) | |
# Repeat the embeddings num_video_frames times | |
# emb: [batch, channels] -> [batch * frames, channels] | |
emb = emb.repeat_interleave(num_frames, dim=0) | |
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) | |
# 2. Pre-Process | |
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) | |
# Feature: Concat the sample && controlnet_cond at dim 1 (channel-wise) !!! | |
sample = torch.cat([sample, controlnet_cond], dim=1) | |
# Merge sample and controlnet_cond together | |
sample = self.conv_in_concat(sample) | |
# 3. Down block | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, # Vae encode + noise | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, # Clip encode | |
image_only_indicator=image_only_indicator, | |
) | |
else: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
image_only_indicator=image_only_indicator, | |
) | |
down_block_res_samples += res_samples | |
# 4. Mid block | |
sample = self.mid_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
# 5. ControlNet blocks | |
controlnet_down_block_res_samples = () | |
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): | |
down_block_res_sample = controlnet_block(down_block_res_sample) | |
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = controlnet_down_block_res_samples | |
# Mid block | |
mid_block_res_sample = self.controlnet_mid_block(sample) | |
# 6. Scaling | |
if guess_mode: | |
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0 | |
scales = scales * conditioning_scale | |
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)] | |
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one | |
else: | |
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] | |
mid_block_res_sample = mid_block_res_sample * conditioning_scale | |
if not return_dict: | |
return (down_block_res_samples, mid_block_res_sample) | |
return ControlNetOutput( | |
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample | |
) | |