Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
def make_colorwheel(): | |
""" | |
Generates a color wheel for optical flow visualization as presented in: | |
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) | |
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf | |
Code follows the original C++ source code of Daniel Scharstein. | |
Code follows the the Matlab source code of Deqing Sun. | |
Returns: | |
np.ndarray: Color wheel | |
""" | |
RY = 15 | |
YG = 6 | |
GC = 4 | |
CB = 11 | |
BM = 13 | |
MR = 6 | |
ncols = RY + YG + GC + CB + BM + MR | |
colorwheel = np.zeros((ncols, 3)) | |
col = 0 | |
# RY | |
colorwheel[0:RY, 0] = 255 | |
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) | |
col = col+RY | |
# YG | |
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) | |
colorwheel[col:col+YG, 1] = 255 | |
col = col+YG | |
# GC | |
colorwheel[col:col+GC, 1] = 255 | |
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) | |
col = col+GC | |
# CB | |
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) | |
colorwheel[col:col+CB, 2] = 255 | |
col = col+CB | |
# BM | |
colorwheel[col:col+BM, 2] = 255 | |
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) | |
col = col+BM | |
# MR | |
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) | |
colorwheel[col:col+MR, 0] = 255 | |
return colorwheel | |
def flow_uv_to_colors(u, v, convert_to_bgr=False): | |
""" | |
Applies the flow color wheel to (possibly clipped) flow components u and v. | |
According to the C++ source code of Daniel Scharstein | |
According to the Matlab source code of Deqing Sun | |
Args: | |
u (np.ndarray): Input horizontal flow of shape [H,W] | |
v (np.ndarray): Input vertical flow of shape [H,W] | |
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
Returns: | |
np.ndarray: Flow visualization image of shape [H,W,3] in range [0, 255] | |
""" | |
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) | |
colorwheel = make_colorwheel() # shape [55x3] | |
ncols = colorwheel.shape[0] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
a = np.arctan2(-v, -u)/np.pi | |
fk = (a+1) / 2*(ncols-1) | |
k0 = np.floor(fk).astype(np.int32) | |
k1 = k0 + 1 | |
k1[k1 == ncols] = 0 | |
f = fk - k0 | |
for i in range(colorwheel.shape[1]): | |
tmp = colorwheel[:,i] | |
col0 = tmp[k0] / 255.0 | |
col1 = tmp[k1] / 255.0 | |
col = (1-f)*col0 + f*col1 | |
idx = (rad <= 1) | |
col[idx] = 1 - rad[idx] * (1-col[idx]) | |
col[~idx] = col[~idx] * 0.75 # out of range | |
# Note the 2-i => BGR instead of RGB | |
ch_idx = 2-i if convert_to_bgr else i | |
flow_image[:,:,ch_idx] = np.floor(255 * col) | |
return flow_image | |
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False): | |
""" | |
Expects a two dimensional flow image of shape. | |
Args: | |
flow_uv (np.ndarray): Flow UV image of shape [H,W,2] | |
clip_flow (float, optional): Clip maximum of flow values. Defaults to None. | |
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
Returns: | |
np.ndarray: Flow visualization image of shape [H,W,3] | |
""" | |
assert flow_uv.ndim == 3, 'input flow must have three dimensions' | |
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' | |
if clip_flow is not None: | |
flow_uv = np.clip(flow_uv, 0, clip_flow) | |
u = flow_uv[:,:,0] | |
v = flow_uv[:,:,1] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
rad_max = np.max(rad) | |
epsilon = 1e-5 | |
u = u / (rad_max + epsilon) | |
v = v / (rad_max + epsilon) | |
return flow_uv_to_colors(u, v, convert_to_bgr) | |
def filter_uv(flow, threshold_factor = 0.1, sample_prob = 1.0): | |
''' | |
Args: | |
flow (numpy): A 2-dim array that stores x and y change in optical flow | |
threshold_factor (float): Prob of discarding outliers vector | |
sample_prob (float): The selection rate of how much proportion of points we need to store | |
''' | |
u = flow[:,:,0] | |
v = flow[:,:,1] | |
# Filter out those less than the threshold | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
rad_max = np.max(rad) | |
threshold = threshold_factor * rad_max | |
flow[:,:,0][rad < threshold] = 0 | |
flow[:,:,1][rad < threshold] = 0 | |
# Randomly sample based on sample_prob | |
zero_prob = 1 - sample_prob | |
random_array = np.random.randn(*flow.shape) | |
random_array[random_array < zero_prob] = 0 | |
random_array[random_array >= zero_prob] = 1 | |
flow = flow * random_array | |
return flow | |
############################################# The following is for dilation method in optical flow ###################################### | |
def sigma_matrix2(sig_x, sig_y, theta): | |
"""Calculate the rotated sigma matrix (two dimensional matrix). | |
Args: | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
Returns: | |
ndarray: Rotated sigma matrix. | |
""" | |
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) | |
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) | |
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) | |
def mesh_grid(kernel_size): | |
"""Generate the mesh grid, centering at zero. | |
Args: | |
kernel_size (int): | |
Returns: | |
xy (ndarray): with the shape (kernel_size, kernel_size, 2) | |
xx (ndarray): with the shape (kernel_size, kernel_size) | |
yy (ndarray): with the shape (kernel_size, kernel_size) | |
""" | |
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) | |
xx, yy = np.meshgrid(ax, ax) | |
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size, | |
1))).reshape(kernel_size, kernel_size, 2) | |
return xy, xx, yy | |
def pdf2(sigma_matrix, grid): | |
"""Calculate PDF of the bivariate Gaussian distribution. | |
Args: | |
sigma_matrix (ndarray): with the shape (2, 2) | |
grid (ndarray): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. | |
Returns: | |
kernel (ndarrray): un-normalized kernel. | |
""" | |
inverse_sigma = np.linalg.inv(sigma_matrix) | |
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) | |
return kernel | |
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): | |
"""Generate a bivariate isotropic or anisotropic Gaussian kernel. | |
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. | |
Args: | |
kernel_size (int): | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
isotropic (bool): | |
Returns: | |
kernel (ndarray): normalized kernel. | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
if isotropic: | |
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) | |
else: | |
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) | |
kernel = pdf2(sigma_matrix, grid) | |
kernel = kernel / np.sum(kernel) | |
return kernel | |