#!/usr/bin/env python ''' This file is to train Stable Video Diffusion with Conditioning design by my peronal implementation which is based on diffusers' training example code. ''' import argparse import logging import math import os, sys import time import random import shutil import warnings from PIL import Image from einops import rearrange, repeat from pathlib import Path from omegaconf import OmegaConf import imageio import cv2 import accelerate import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.utils.tensorboard import SummaryWriter from torch.utils.data import RandomSampler import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from packaging import version from PIL import Image from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKLTemporalDecoder, DDPMScheduler, UniPCMultistepScheduler, ) from diffusers.training_utils import EMAModel, compute_snr from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available, load_image, export_to_video from diffusers.utils.import_utils import is_xformers_available from diffusers.image_processor import VaeImageProcessor from diffusers.utils.torch_utils import randn_tensor from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection if is_wandb_available(): import wandb # Import files from the local folder root_path = os.path.abspath('.') sys.path.append(root_path) from svd.pipeline_stable_video_diffusion_controlnet import StableVideoDiffusionControlNetPipeline from svd.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel from svd.temporal_controlnet import ControlNetModel from utils.img_utils import resize_with_antialiasing from utils.optical_flow_utils import flow_to_image, filter_uv, bivariate_Gaussian from data_loader.video_dataset import tokenize_captions from data_loader.video_this_that_dataset import Video_ThisThat_Dataset, get_thisthat_sam from train_code.train_svd import import_pretrained_text_encoder # Will error if the minimal version of diffusers is not installed. Remove at your own risks. # check_min_version("0.25.0.dev0") logger = get_logger(__name__) warnings.filterwarnings('ignore') ################################################################################################################################################### def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.") parser.add_argument( "--config_path", type=str, default="config/train_image2video_controlnet.yaml", help="Path to pretrained model or model identifier from huggingface.co/models.", ) args = parser.parse_args() return args def log_validation(vae, unet, controlnet, image_encoder, text_encoder, tokenizer, config, accelerator, weight_dtype, step, parent_store_folder=None, force_close_flip=False, use_ambiguous_prompt=False): # This function will also be used in other files print("Running validation... ") # Init validation_source_folder = config["validation_img_folder"] # Init the pipeline pipeline = StableVideoDiffusionControlNetPipeline.from_pretrained( config["pretrained_model_name_or_path"], # Still based on regular SVD config vae = vae, image_encoder = image_encoder, unet = unet, revision = None, # Set None directly now torch_dtype = weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # Process all image in the folder frames_collection = [] for image_name in sorted(os.listdir(validation_source_folder)): if accelerator.is_main_process: if parent_store_folder is None: validation_store_folder = os.path.join(config["validation_store_folder"] + "_" + config["scheduler"], "step_" + str(step), image_name) else: validation_store_folder = os.path.join(parent_store_folder, image_name) if os.path.exists(validation_store_folder): shutil.rmtree(validation_store_folder) os.makedirs(validation_store_folder) image_path = os.path.join(validation_source_folder, image_name, 'im_0.jpg') ref_image = load_image(image_path) # [0, 255] Range ref_image = ref_image.resize((config["width"], config["height"])) # Prepare text prompt if config["use_text"]: # Read the file file_path = os.path.join(validation_source_folder, image_name, "lang.txt") file = open(file_path, 'r') prompt = file.readlines()[0] # Only read the first line if use_ambiguous_prompt: prompt = prompt.split(" ")[0] + " this to there" print("We are creating ambiguous prompt, which is: ", prompt) else: prompt = "" # Use the same tokenize process as the dataset preparation stage tokenized_prompt = tokenize_captions(prompt, tokenizer, config, is_train=False).unsqueeze(0).to(accelerator.device) # Use unsqueeze to expand dim # Store the prompt for the sanity check f = open(os.path.join(validation_store_folder, "lang_cond.txt"), "a") f.write(prompt) f.close() # Flip the image by chance (it is needed to check whether there is any object position words [left|right] in the prompt text) flip = False if not force_close_flip: # force_close_flip is True in testing time; else, we cannot match in the same standard if random.random() < config["flip_aug_prob"]: if config["use_text"]: if prompt.find("left") == -1 and prompt.find("right") == -1: # Cannot have position word, like left and right (up and down is ok) flip = True else: flip = True if flip: print("Use flip in validation!") ref_image = ref_image.transpose(Image.FLIP_LEFT_RIGHT) if config["data_loader_type"] == "thisthat": condition_img, reflected_motion_bucket_id, controlnet_image_index, coordinate_values = get_thisthat_sam(config, os.path.join(validation_source_folder, image_name), flip = flip, store_dir = validation_store_folder, verbose = True) else: raise NotImplementedError("We don't support such data loader type") # Call the pipeline with torch.autocast("cuda"): frames = pipeline( image = ref_image, condition_img = condition_img, # numpy [0,1] range controlnet = accelerator.unwrap_model(controlnet), prompt = tokenized_prompt, use_text = config["use_text"], text_encoder = text_encoder, height = config["height"], width = config["width"], num_frames = config["video_seq_length"], decode_chunk_size = 8, motion_bucket_id = reflected_motion_bucket_id, controlnet_image_index = controlnet_image_index, coordinate_values = coordinate_values, num_inference_steps = config["num_inference_steps"], max_guidance_scale = config["inference_max_guidance_scale"], fps = 7, use_instructpix2pix = config["use_instructpix2pix"], noise_aug_strength = config["inference_noise_aug_strength"], controlnet_conditioning_scale = config["outer_conditioning_scale"], inner_conditioning_scale = config["inner_conditioning_scale"], guess_mode = config["inference_guess_mode"], # False in inference image_guidance_scale = config["image_guidance_scale"], ).frames[0] for idx, frame in enumerate(frames): frame.save(os.path.join(validation_store_folder, str(idx)+".png")) imageio.mimsave(os.path.join(validation_store_folder, 'combined.gif'), frames, duration=0.05) frames_collection.append(frames) # Cleaning process del pipeline torch.cuda.empty_cache() return frames_collection # Return resuly based on the need def tensor_to_vae_latent(inputs, vae): video_length = inputs.shape[1] inputs = rearrange(inputs, "b f c h w -> (b f) c h w") latents = vae.encode(inputs).latent_dist.mode() latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length) # Use f or b to rearrage should have the same effect latents = latents * vae.config.scaling_factor return latents def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32): """Draws samples from an lognormal distribution.""" u = torch.rand(shape, dtype=dtype, device=device) * (1 - 2e-7) + 1e-7 # In the range [0, 1] # TODO: "* (1 - 2e-7) + 1e-7" is not included in previous code, I add it back, don't why whether there is any influence now return torch.distributions.Normal(loc, scale).icdf(u).exp() def get_add_time_ids( unet_config, expected_add_embed_dim, fps, motion_bucket_id, noise_aug_strength, dtype, batch_size, num_videos_per_prompt, do_classifier_free_guidance = False, ): # Construct Basic add_time_ids items add_time_ids = [fps, motion_bucket_id, noise_aug_strength] # Sanity Check passed_add_embed_dim = unet_config.addition_time_embed_dim * len(add_time_ids) if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1) return add_time_ids #################################################################################################################################################################### def main(config): # Read Config Setting resume_from_checkpoint = config["resume_from_checkpoint"] output_dir = config["output_dir"] logging_name = config["logging_name"] mixed_precision = config["mixed_precision"] report_to = config["report_to"] pretrained_model_name_or_path = config["pretrained_model_name_or_path"] pretrained_tokenizer_name_or_path = config["pretrained_tokenizer_name_or_path"] gradient_checkpointing = config["gradient_checkpointing"] learning_rate = config["learning_rate"] adam_beta1 = config["adam_beta1"] adam_beta2 = config["adam_beta2"] adam_weight_decay = config["adam_weight_decay"] adam_epsilon = config["adam_epsilon"] train_batch_size = config["train_batch_size"] dataloader_num_workers = config["dataloader_num_workers"] gradient_accumulation_steps = config["gradient_accumulation_steps"] num_train_iters = config["num_train_iters"] lr_warmup_steps = config["lr_warmup_steps"] checkpointing_steps = config["checkpointing_steps"] process_fps = config["process_fps"] train_noise_aug_strength = config["train_noise_aug_strength"] use_8bit_adam = config["use_8bit_adam"] scale_lr = config["scale_lr"] conditioning_dropout_prob = config["conditioning_dropout_prob"] checkpoints_total_limit = config["checkpoints_total_limit"] validation_step = config["validation_step"] partial_finetune = config['partial_finetune'] load_unet_path = config['load_unet_path'] if mixed_precision == 'None': # For mixed precision use mixed_precision = 'no' # Default Setting revision = None variant = "fp16" # TODO: 这里进行了调整,不知道会有多少区别,现在跟unet training保持一致 lr_scheduler = "constant" max_grad_norm = 1.0 tracker_project_name = "img2video" num_videos_per_prompt = 1 seed = 42 # No CFG in training now # Define the accelerator logging_dir = Path(output_dir, logging_name) accelerator_project_config = ProjectConfiguration(project_dir=output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps = gradient_accumulation_steps, mixed_precision = mixed_precision, log_with = report_to, project_config = accelerator_project_config, ) generator = torch.Generator(device=accelerator.device).manual_seed(seed) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # Handle the repository creation if accelerator.is_main_process and resume_from_checkpoint != "latest": # For the latest checkpoint version, we don't need to delete our folders # Validation file validation_store_folder = config["validation_store_folder"] + "_" + config["scheduler"] print("We will remove ", validation_store_folder) if os.path.exists(validation_store_folder): archive_name = validation_store_folder + "_archive" if os.path.exists(archive_name): shutil.rmtree(archive_name) print("We will move to archive ", archive_name) os.rename(validation_store_folder, archive_name) os.makedirs(validation_store_folder) # Output Dir if os.path.exists(output_dir): shutil.rmtree(output_dir) # os.makedirs(output_dir, exist_ok=True) # Log if os.path.exists("runs"): shutil.rmtree("runs") # Copy the config to here os.system(" cp config/train_image2video_controlnet.yaml " + validation_store_folder + "/") # Load All Module Needed feature_extractor = CLIPImageProcessor.from_pretrained( pretrained_model_name_or_path, subfolder="feature_extractor", revision=revision ) # This instance has now weight, they are just seeting file image_encoder = CLIPVisionModelWithProjection.from_pretrained( pretrained_model_name_or_path, subfolder="image_encoder", revision=revision, variant=variant ) vae = AutoencoderKLTemporalDecoder.from_pretrained( pretrained_model_name_or_path, subfolder="vae", revision=revision, variant=variant ) if load_unet_path != None: print("We will use pretrained UNet path by our, at ", load_unet_path) unet = UNetSpatioTemporalConditionModel.from_pretrained( load_unet_path, subfolder = "unet", low_cpu_mem_usage = True, ) # For the variant, we don't have fp16 version, so we will read from fp32 else: print("We will still use provided UNet path") unet = UNetSpatioTemporalConditionModel.from_pretrained( pretrained_model_name_or_path, subfolder = "unet", low_cpu_mem_usage = True, variant = variant, ) # Prepare for the tokenizer if use text tokenizer = AutoTokenizer.from_pretrained( pretrained_tokenizer_name_or_path, subfolder = "tokenizer", revision = revision, use_fast = False, ) if config["use_text"]: # Clip Text Encoder text_encoder_cls = import_pretrained_text_encoder(pretrained_tokenizer_name_or_path, revision) text_encoder = text_encoder_cls.from_pretrained( pretrained_tokenizer_name_or_path, subfolder = "text_encoder", revision = revision, variant = variant ) else: text_encoder = None # Init for the Controlnet (check if has pretrained path to load) if config["load_controlnet_path"] != None: print("We will load pre-trained controlnet from ", config["load_controlnet_path"]) controlnet = ControlNetModel.from_pretrained(config["load_controlnet_path"], subfolder="controlnet") else: controlnet = ControlNetModel.from_unet(unet, load_weights_from_unet=True, conditioning_channels=config["conditioning_channels"]) # Store the config due to the disappearance after accelerator prepare unet_config = unet.config expected_add_embed_dim = unet.add_embedding.linear_1.in_features # Freeze vae + feature_extractor + image_encoder, but set unet to trainable vae.requires_grad_(False) image_encoder.requires_grad_(False) unet.requires_grad_(False) # UNet won't be trained in conditioning branch controlnet.requires_grad_(False) # Will turn back to requires grad later on if config["use_text"]: text_encoder.requires_grad_(False) # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae + unet + image_encoder to gpu and cast to weight_dtype vae.to(accelerator.device, dtype=weight_dtype) unet.to(accelerator.device, dtype=weight_dtype) # we don't train UNet anymore, so we cast it here image_encoder.to(accelerator.device, dtype=weight_dtype) if config["use_text"]: text_encoder.to(accelerator.device, dtype=weight_dtype) # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: i = len(weights) - 1 while len(weights) > 0: weights.pop() model = models[i] sub_dir = "controlnet" model.save_pretrained(os.path.join(output_dir, sub_dir)) i -= 1 def load_model_hook(models, input_dir): while len(models) > 0: # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if gradient_checkpointing: controlnet.enable_gradient_checkpointing() # Check that all trainable models are in full precision low_precision_error_string = ( " Please make sure to always have all model weights in full float32 precision when starting training - even if" " doing mixed precision training, copy of the weights should still be float32." ) if accelerator.unwrap_model(controlnet).dtype != torch.float32: raise ValueError( f"Controlnet loaded as datatype {accelerator.unwrap_model(controlnet).dtype}. {low_precision_error_string}" ) ################################ Make Training dataset ###################################### if config["data_loader_type"] == "thisthat": # Only keep thisthat mode now train_dataset = Video_ThisThat_Dataset(config, accelerator.device, tokenizer=tokenizer) else: raise NotImplementedError("We don't support such data loader type") sampler = RandomSampler(train_dataset) train_dataloader = torch.utils.data.DataLoader( train_dataset, sampler = sampler, batch_size = train_batch_size, num_workers = dataloader_num_workers * accelerator.num_processes, ) ############################################################################################## ####################################### Optimizer Setting ############################################################## if scale_lr: learning_rate = ( learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes ) # 8bit adam to save more memory if use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW # Make ControlNet require Grad controlnet.requires_grad_(True) ###################### For partial fine-tune setting ####################### parameters_list = [] for name, para in controlnet.named_parameters(): if partial_finetune: # The partial finetune we use is to only train attn layers, which will be ~190M params (TODO:needs to check later for exact value) if not name.find("attn") != -1: # Only block the spatial Transformer para.requires_grad = False else: parameters_list.append(para) para.requires_grad = True else: parameters_list.append(para) para.requires_grad = True # Double check the weight that will be trained total_params_for_training = 0 for name, param in controlnet.named_parameters(): if param.requires_grad: total_params_for_training += param.numel() print(name + " requires grad update") print("Total parameter that will be trained in controlnet has ", total_params_for_training) ############################################################################# # Optimizer creation optimizer = optimizer_cls( parameters_list, lr = learning_rate, betas = (adam_beta1, adam_beta2), weight_decay = adam_weight_decay, eps = adam_epsilon, ) # Scheduler and Training steps dataset_length = len(train_dataset) print("Dataset length read from the train side is ", dataset_length) num_update_steps_per_epoch = math.ceil(dataset_length / gradient_accumulation_steps) max_train_steps = num_train_iters * train_batch_size # Learning Rate Scheduler (we all use constant) lr_scheduler = get_scheduler( "constant", optimizer = optimizer, num_warmup_steps = lr_warmup_steps * accelerator.num_processes, num_training_steps = max_train_steps * accelerator.num_processes, num_cycles = 1, power = 1.0, ) ####################################################################################################################### # Prepare everything with our `accelerator`. controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( controlnet, optimizer, train_dataloader, lr_scheduler ) # We need to RECALCULATE our total training steps as the size of the training dataloader may have changed. print("accelerator.num_processes is ", accelerator.num_processes) print("num_train_iters is ", num_train_iters) num_train_epochs = math.ceil(num_train_iters * accelerator.num_processes * gradient_accumulation_steps / dataset_length) print("num_train_epochs is ", num_train_epochs) # We need to initialize the trackers we use, and also store our configuration. if accelerator.is_main_process: # Only on the main process! tracker_config = dict(vars(args)) accelerator.init_trackers(tracker_project_name, tracker_config) # Train! logger.info("***** Running training *****") logger.info(f" Dataset Length = {dataset_length}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {train_batch_size}") logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_train_steps}") # Load the Closest / Best weight TODO: need to check how to use checkpoints from pre-trained weights!!! global_step = 0 # Catch the current iteration first_epoch = 0 if resume_from_checkpoint: # Resume Checkpoints!!!!! if resume_from_checkpoint != "latest": path = os.path.basename(resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None print("We will resume the latest weight ", path) if path is None: accelerator.print( f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run." ) resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 if accelerator.is_main_process: print("Initial Learning rate is ", optimizer.param_groups[0]['lr']) print("global_step will start from ", global_step) progress_bar = tqdm( range(initial_global_step, max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) # Prepare tensorboard log writer = SummaryWriter() ################################### Auxiliary Function ################################################################################################ def encode_clip(pixel_values, prompt): ''' Encoder hidden states input source pixel_values: first frame pixel information prompt: language prompt with takenized ''' ########################################## Prepare the Text Embedding ##################################################### # pixel_values is in the range [-1, 1] pixel_values = resize_with_antialiasing(pixel_values, (224, 224)) pixel_values = (pixel_values + 1.0) / 2.0 # [-1, 1] -> [0, 1] # Normalize the image with for CLIP input pixel_values = feature_extractor( images=pixel_values, do_normalize=True, do_center_crop=False, do_resize=False, do_rescale=False, return_tensors="pt", ).pixel_values # The following is the same as _encode_image in SVD pipeline pixel_values = pixel_values.to(device=accelerator.device, dtype=weight_dtype) image_embeddings = image_encoder(pixel_values).image_embeds image_embeddings = image_embeddings.unsqueeze(1) # duplicate image embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = image_embeddings.shape image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) encoder_hidden_states = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) ############################################################################################################################# ########################################## Prepare the Text embedding if needed ############################################# if config["use_text"]: text_embeddings = text_encoder(prompt)[0] # Concat two embeddings together on dim 1 encoder_hidden_states = torch.cat((text_embeddings, encoder_hidden_states), dim=1) # 目前先用text_embeddings 再用encoder_hidden_states感觉好一点 # Layer norm on the last dim layer_norm = nn.LayerNorm((78, 1024)).to(device=accelerator.device, dtype=weight_dtype) encoder_hidden_states_norm = layer_norm(encoder_hidden_states) # Return return encoder_hidden_states_norm else: # Just return back default on return encoder_hidden_states ############################################################################################################################# ######################################################################################################################################################### ############################################################################################################################ # For the training, we mimic the code from test2image in diffusers TODO: check the data loader conflict for epoch in range(first_epoch, num_train_epochs): controlnet.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): with accelerator.accumulate(controlnet): # batch is a dictionary with video_frames and controlnet_condition video_frames = batch["video_frames"].to(weight_dtype).to(accelerator.device, non_blocking=True) # [-1, 1] range condition_img = batch["controlnet_condition"].to(dtype=weight_dtype) # [0, 1] range reflected_motion_bucket_id = batch["reflected_motion_bucket_id"] controlnet_image_index = batch["controlnet_image_index"] prompt = batch["prompt"] # Images to VAE latent space latents = tensor_to_vae_latent(video_frames, vae) # For all frames ##################################### Add Noise ######################################## bsz, num_frames = latents.shape[:2] # Encode the first frame conditional_pixel_values = video_frames[:, 0, :, :, :] # First frame # Following AnimateSomething, we use constant to repace cond_sigmas conditional_pixel_values = conditional_pixel_values + torch.randn_like(conditional_pixel_values) * train_noise_aug_strength # cond_sigmas conditional_latents = vae.encode(conditional_pixel_values).latent_dist.mode() conditional_latents = repeat(conditional_latents, 'b c h w->b f c h w', f=num_frames) # conditional_latents没有noise的成分的 # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) sigmas = rand_log_normal(shape=[bsz,], loc=config["noise_mean"], scale=config["noise_std"]).to(weight_dtype).to(latents.device) # TODO: 我觉得noise这块,sigma算法是最不确定是否正确的地方 sigmas = sigmas[:, None, None, None, None] noisy_latents = latents + torch.randn_like(latents) * sigmas inp_noisy_latents = noisy_latents / ((sigmas**2 + 1) ** 0.5) # multiplied by c_in in paper # For the encoder hidden states based on the first frame and prompt encoder_hidden_states = encode_clip(video_frames[:, 0, :, :, :].float(), prompt) # First Frame + Text Prompt # Conditioning dropout to support classifier-free guidance during inference. For more details # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. if conditioning_dropout_prob != 0: random_p = torch.rand(bsz, device=latents.device, generator=generator) # Sample masks for the encoder_hidden_states (to replace prompts in InstructPix2Pix). prompt_mask = random_p < 2 * conditioning_dropout_prob prompt_mask = prompt_mask.reshape(bsz, 1, 1) # Final encoder_hidden_states conditioning. null_conditioning = torch.zeros_like(encoder_hidden_states) # encoder_hidden_states has already been used with .unsqueeze(1) encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states) # Sample masks for the original image latents. image_mask_dtype = conditional_latents.dtype image_mask = 1 - ((random_p >= conditioning_dropout_prob).to(image_mask_dtype) * (random_p < 3 * conditioning_dropout_prob).to(image_mask_dtype)) image_mask = image_mask.reshape(bsz, 1, 1, 1) # Final image conditioning. conditional_latents = image_mask * conditional_latents # The Concatenation is move downward with the masking feature # GT noise target = latents ########################################################################################## ################################ Other Embedding and Conditioning ################################### reflected_motion_bucket_id = torch.sum(reflected_motion_bucket_id)/len(reflected_motion_bucket_id) reflected_motion_bucket_id = int(reflected_motion_bucket_id.cpu().detach().numpy()) # print("Training reflected_motion_bucket_id is ", reflected_motion_bucket_id) added_time_ids = get_add_time_ids( unet_config, expected_add_embed_dim, process_fps, reflected_motion_bucket_id, train_noise_aug_strength, # Note: noise strength weight_dtype, train_batch_size, num_videos_per_prompt, ) # The same as SVD pipeline's _get_add_time_ids added_time_ids = added_time_ids.to(accelerator.device) timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]).to(accelerator.device) ########################################################################################## ################################### Get ControlNet Output ################################### # Transform controlnet_image_index to the data format we want controlnet_image_index = list(controlnet_image_index.cpu().detach().numpy()[0]) assert condition_img.shape[1] >= len(controlnet_image_index) # Designing the 0/1 mask for Sparse Conditioning controlnet_conditioning_mask_shape = list(condition_img.shape) controlnet_conditioning_mask_shape[2] = 1 # frame dim controlnet_conditioning_mask = torch.zeros(controlnet_conditioning_mask_shape).to(dtype=weight_dtype).to(accelerator.device) controlnet_conditioning_mask[:, controlnet_image_index] = 1 # Add vae latent mask to controlnet noise if config["mask_controlnet_vae"]: b, f, c, h, w = conditional_latents.shape # Create a mask: Value less than the threshold is set to be True mask = torch.rand((b, f, 1, h, w), device=accelerator.device) < (1-config["mask_proportion"]) # channel sync # mask[:,0,:,:,:] = 1 # For the first frame, we still keep it # Multiply to the conditional latents, we will just make the mean and variance zero to present those with zero masking masked_conditional_latents = conditional_latents * mask controlnet_inp_noisy_latents = torch.cat([inp_noisy_latents, masked_conditional_latents], dim=2) else: controlnet_inp_noisy_latents = torch.cat([inp_noisy_latents, conditional_latents], dim=2) # VAE encode controlnet_cond = condition_img.flatten(0, 1) controlnet_cond = vae.encode(controlnet_cond).latent_dist.mode() down_block_res_samples, mid_block_res_sample = controlnet( sample = controlnet_inp_noisy_latents, timestep = timesteps, encoder_hidden_states = encoder_hidden_states, added_time_ids = added_time_ids, controlnet_cond = controlnet_cond, return_dict = False, conditioning_scale = config["outer_conditioning_scale"], inner_conditioning_scale = config["inner_conditioning_scale"], guess_mode = False, # No Guess Mode ) ############################################################################################# ###################################### Predict Noise ######################################## # Add vae latent mask to controlnet noise if config["mask_unet_vae"]: b, f, c, h, w = conditional_latents.shape # Create a mask mask = torch.rand((b, f, 1, h, w), device=accelerator.device) < (1-config["mask_proportion"]) # channel sync # mask[:,0,:,:,:] = 1 # For the first frame, we still keep it # Multiply to the conditional latents, we will just make the mean and variance zero to present those with zero masking if not config["mask_controlnet_vae"]: masked_conditional_latents = conditional_latents * mask unet_inp_noisy_latents = torch.cat([inp_noisy_latents, masked_conditional_latents], dim=2) else: unet_inp_noisy_latents = torch.cat([inp_noisy_latents, conditional_latents], dim=2) # Add with controlnet middle output layers model_pred = unet( unet_inp_noisy_latents, timesteps, encoder_hidden_states, added_time_ids = added_time_ids, down_block_additional_residuals = [ sample.to(dtype=weight_dtype) for sample in down_block_res_samples ], mid_block_additional_residual = mid_block_res_sample.to(dtype=weight_dtype), ).sample # Denoise the latents c_out = -sigmas / ((sigmas**2 + 1)**0.5) c_skip = 1 / (sigmas**2 + 1) denoised_latents = model_pred * c_out + c_skip * noisy_latents # What our loss will optimize with weighing = (1 + sigmas ** 2) * (sigmas**-2.0) ########################################################################################## ############################### Calculate Loss and Update Optimizer ####################### # MSE loss loss = torch.mean( ( weighing.float() * (denoised_latents.float() - target.float())**2 ).reshape(target.shape[0], -1), dim=1, ) loss = loss.mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean() train_loss += avg_loss.item() / gradient_accumulation_steps # Update Tensorboard writer.add_scalar('Loss/train-Loss-Step', avg_loss.item()/ gradient_accumulation_steps, global_step) # 我觉得loss的report就用这个avg_loss就行了 # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: # For ControlNet params_to_clip = controlnet.parameters() accelerator.clip_grad_norm_(params_to_clip, max_grad_norm) optimizer.step() lr_scheduler.step() # I think constant will take no influence here optimizer.zero_grad(set_to_none=True) ########################################################################################## # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 ########################################## Checkpoints ######################################### if global_step != 0 and global_step % checkpointing_steps == 0: if accelerator.is_main_process: start = time.time() # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if checkpoints_total_limit is not None: checkpoints = os.listdir(output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= checkpoints_total_limit: num_to_remove = len(checkpoints) - checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") print("Save time use " + str(time.time() - start) + " s") ######################################################################################################## # Update Log logs = {"step_loss": loss.detach().item()} progress_bar.set_postfix(**logs) ##################################### Validation per XXX iterations ####################################### if accelerator.is_main_process: if global_step > -1 and global_step % validation_step == 0: # Fixed 100 steps to validate log_validation( vae, unet, controlnet, image_encoder, text_encoder, tokenizer, config, accelerator, weight_dtype, global_step, use_ambiguous_prompt = config["mix_ambiguous"], ) ############################################################################################################### # Update Steps and Break if needed global step should be updated together global_step += 1 if global_step >= max_train_steps: break ############################################################################################################################ if __name__ == "__main__": args = parse_args() config = OmegaConf.load(args.config_path) main(config)