# ************************************************************************* # Copyright (2023) Bytedance Inc. # # Copyright (2023) DragDiffusion Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ************************************************************************* import os, shutil, sys import urllib.request import argparse import imageio import math import cv2 import collections import numpy as np import gradio as gr from PIL import Image import torch from pathlib import Path from omegaconf import OmegaConf from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from accelerate import Accelerator from accelerate.utils import ProjectConfiguration from diffusers import ( AutoencoderKLTemporalDecoder, DDPMScheduler, ) from diffusers.utils import check_min_version, is_wandb_available, load_image, export_to_video from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, PretrainedConfig # Import files from the local folder root_path = os.path.abspath('.') sys.path.append(root_path) from train_code.train_svd import import_pretrained_text_encoder from data_loader.video_dataset import tokenize_captions from data_loader.video_this_that_dataset import get_thisthat_sam from svd.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel from svd.pipeline_stable_video_diffusion import StableVideoDiffusionPipeline from svd.temporal_controlnet import ControlNetModel from svd.pipeline_stable_video_diffusion_controlnet import StableVideoDiffusionControlNetPipeline from utils.optical_flow_utils import bivariate_Gaussian # For the 2D dilation blur_kernel = bivariate_Gaussian(99, 10, 10, 0, grid = None, isotropic = True) # Import # LENGTH=480 # length of the square area displaying/editing images HEIGHT = 256 WIDTH = 384 MARKDOWN = \ """ ##

This&That

[GitHub](https://github.com/Kiteretsu77/This_and_That_VDM) | [Paper](http://arxiv.org/abs/2407.05530) | [Webpage](https://cfeng16.github.io/this-and-that/) This&That is a Robotics scenario (Bridge-dataset-based for this repo) Language-Gesture-Image-conditioned Video Generation Model for Robot Planning. This Demo is on the Video Diffusion Model part. Only GestureNet is provided in this Gradio Demo, you can check the full test code for all pretrained weight available. ### Note: The index we put the gesture point by default here is [4, 10] for two gesture points or [4] for one gesture point. ### Note: The result now only support is 256x384 ### Note: Click "Clear All" to restart everything; Click "Undo Point" to cancel the point you put If This&That is helpful, please help star the [GitHub Repo](https://github.com/Kiteretsu77/This_and_That_VDM). Thanks! """ def store_img(img): # when new image is uploaded, `selected_points` should be empty return img, [] def clear_all(): return None, \ gr.Image(value=None, height=HEIGHT, width=WIDTH, interactive=False), \ None, [] # selected points def undo_points(original_image): img = original_image.copy() return img, [] # User click the image to get points, and show the points on the image [From https://github.com/Yujun-Shi/DragDiffusion] def get_points(img, original_image, sel_pix, evt: gr.SelectData): # collect the selected point sel_pix.append(evt.index) if len(sel_pix) > 2: raise gr.Error("We only at most support two points") if original_image is None: original_image = img.copy() # draw points points = [] for idx, point in enumerate(sel_pix): if idx % 2 == 0: # draw a red circle at the handle point cv2.circle(img, tuple(point), 10, (255, 0, 0), -1) else: # draw a blue circle at the handle point cv2.circle(img, tuple(point), 10, (0, 255, 0), -1) points.append(tuple(point)) # draw an arrow from handle point to target point # if len(points) == 2: # cv2.arrowedLine(img, points[0], points[1], (255, 255, 255), 4, tipLength=0.5) # points = [] return [img if isinstance(img, np.ndarray) else np.array(img), original_image] def gesturenet_inference(ref_image, prompt, selected_points): # Check some paramter, must have prompt and selected points if prompt == "" or prompt is None: raise gr.Error("Please input text prompt") if selected_points == []: raise gr.Error("Please click one/two points in the Image") # Prepare the setting frame_idxs = [4, 10] use_ambiguous_prompt = False model_type = "GestureNet" huggingface_pretrained_path = "HikariDawn/This-and-That-1.1" print("Text prompt is ", prompt) # Prepare tmp folder store_folder_name = "tmp" if os.path.exists(store_folder_name): shutil.rmtree(store_folder_name) os.makedirs(store_folder_name) # Read the yaml setting files (Very important for loading hyperparamters needed) if not os.path.exists(huggingface_pretrained_path): yaml_download_path = hf_hub_download(repo_id=huggingface_pretrained_path, subfolder="unet", filename="train_image2video.yaml") if model_type == "GestureNet": yaml_download_path = hf_hub_download(repo_id=huggingface_pretrained_path, subfolder="gesturenet", filename="train_image2video_gesturenet.yaml") else: # If the path is a local path we can concatenate it here yaml_download_path = os.path.join(huggingface_pretrained_path, "unet", "train_image2video.yaml") if model_type == "GestureNet": yaml_download_path = os.path.join(huggingface_pretrained_path, "gesturenet", "train_image2video_gesturenet.yaml") # Load the config assert(os.path.exists(yaml_download_path)) config = OmegaConf.load(yaml_download_path) ################################################ Prepare vae, unet, image_encoder Same as before ################################################################# print("Prepare the pretrained model") accelerator = Accelerator( gradient_accumulation_steps = config["gradient_accumulation_steps"], mixed_precision = config["mixed_precision"], log_with = config["report_to"], project_config = ProjectConfiguration(project_dir=config["output_dir"], logging_dir=Path(config["output_dir"], config["logging_name"])), ) feature_extractor = CLIPImageProcessor.from_pretrained( config["pretrained_model_name_or_path"], subfolder="feature_extractor", revision=None ) # This instance has now weight, they are just seeting file image_encoder = CLIPVisionModelWithProjection.from_pretrained( config["pretrained_model_name_or_path"], subfolder="image_encoder", revision=None, variant="fp16" ) vae = AutoencoderKLTemporalDecoder.from_pretrained( config["pretrained_model_name_or_path"], subfolder="vae", revision=None, variant="fp16" ) unet = UNetSpatioTemporalConditionModel.from_pretrained( huggingface_pretrained_path, subfolder = "unet", low_cpu_mem_usage = True, # variant = "fp16", ) # For text .............................................. tokenizer = AutoTokenizer.from_pretrained( config["pretrained_tokenizer_name_or_path"], subfolder = "tokenizer", revision = None, use_fast = False, ) # Clip Text Encoder text_encoder_cls = import_pretrained_text_encoder(config["pretrained_tokenizer_name_or_path"], revision=None) text_encoder = text_encoder_cls.from_pretrained(config["pretrained_tokenizer_name_or_path"], subfolder = "text_encoder", revision = None, variant = None) weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae + image_encoder to gpu and cast to weight_dtype vae.requires_grad_(False) image_encoder.requires_grad_(False) unet.requires_grad_(False) # Will switch back at the end text_encoder.requires_grad_(False) # Move to accelerator vae.to(accelerator.device, dtype=weight_dtype) image_encoder.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) # For GestureNet if model_type == "GestureNet": unet.to(accelerator.device, dtype=weight_dtype) # There is no need to cast unet in unet training, only needed in controlnet one # Handle the Controlnet first from UNet gesturenet = ControlNetModel.from_pretrained( huggingface_pretrained_path, subfolder = "gesturenet", low_cpu_mem_usage = True, variant = None, ) gesturenet.requires_grad_(False) gesturenet.to(accelerator.device) ############################################################################################################################################################## # Init the pipeline pipeline = StableVideoDiffusionControlNetPipeline.from_pretrained( config["pretrained_model_name_or_path"], # Still based on regular SVD config vae = vae, image_encoder = image_encoder, unet = unet, revision = None, # Set None directly now torch_dtype = weight_dtype, ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) ############################## Prepare and Process the condition here ############################## org_height, org_width, _ = ref_image.shape ref_image_pil = Image.fromarray(ref_image) ref_image_pil = ref_image_pil.resize((config["width"], config["height"])) # Initial the optical flow format we want gesture_condition_img = np.zeros((config["video_seq_length"], config["conditioning_channels"], config["height"], config["width"]), dtype=np.float32) # The last image should be empty # Handle the selected points to the condition we want for point_idx, point in enumerate(selected_points): frame_idx = frame_idxs[point_idx] horizontal, vertical = point # Init the base image base_img = np.zeros((org_height, org_width, 3)).astype(np.float32) # Use the original image size base_img.fill(255) # Draw square around the target position dot_range = 10 # Diameter for i in range(-1*dot_range, dot_range+1): for j in range(-1*dot_range, dot_range+1): dil_vertical, dil_horizontal = vertical + i, horizontal + j if (0 <= dil_vertical and dil_vertical < base_img.shape[0]) and (0 <= dil_horizontal and dil_horizontal < base_img.shape[1]): if point_idx == 0: base_img[dil_vertical][dil_horizontal] = [0, 0, 255] # The first point should be red else: base_img[dil_vertical][dil_horizontal] = [0, 255, 0] # The second point should be green to distinguish the first point # Dilate if config["dilate"]: base_img = cv2.filter2D(base_img, -1, blur_kernel) ############################################################################################################################## ### The core pipeline of processing is: Dilate -> Resize -> Range Shift -> Transpose Shape -> Store # Resize frames Don't use negative and don't resize in [0,1] base_img = cv2.resize(base_img, (config["width"], config["height"]), interpolation = cv2.INTER_CUBIC) # Channel Transform and Range Shift if config["conditioning_channels"] == 3: # Map to [0, 1] range base_img = base_img / 255.0 else: raise NotImplementedError() # ReOrganize shape base_img = base_img.transpose(2, 0, 1) # hwc -> chw # Write base img based on frame_idx gesture_condition_img[frame_idx] = base_img # Only the first frame, the rest is 0 initialized #################################################################################################### # Use the same tokenize process as the dataset preparation stage tokenized_prompt = tokenize_captions(prompt, tokenizer, config, is_train=False).unsqueeze(0).to(accelerator.device) # Use unsqueeze to expand dim # Call the pipeline with torch.autocast("cuda"): frames = pipeline( image = ref_image_pil, condition_img = gesture_condition_img, # numpy [0,1] range controlnet = accelerator.unwrap_model(gesturenet), prompt = tokenized_prompt, use_text = config["use_text"], text_encoder = text_encoder, height = config["height"], width = config["width"], num_frames = config["video_seq_length"], decode_chunk_size = 8, motion_bucket_id = 200, # controlnet_image_index = controlnet_image_index, # coordinate_values = coordinate_values, num_inference_steps = config["num_inference_steps"], max_guidance_scale = config["inference_max_guidance_scale"], fps = 7, use_instructpix2pix = config["use_instructpix2pix"], noise_aug_strength = config["inference_noise_aug_strength"], controlnet_conditioning_scale = config["outer_conditioning_scale"], inner_conditioning_scale = config["inner_conditioning_scale"], guess_mode = config["inference_guess_mode"], # False in inference image_guidance_scale = config["image_guidance_scale"], ).frames[0] # Save frames video_file_path = os.path.join(store_folder_name, "tmp.mp4") writer = imageio.get_writer(video_file_path, fps=4) for idx, frame in enumerate(frames): frame.save(os.path.join(store_folder_name, str(idx)+".png")) writer.append_data(cv2.cvtColor(cv2.imread(os.path.join(store_folder_name, str(idx)+".png")), cv2.COLOR_BGR2RGB)) writer.close() # Cleaning process del pipeline torch.cuda.empty_cache() return gr.update(value=video_file_path, width=config["width"], height=config["height"]) # Return resuly based on the need if __name__ == '__main__': # Gradio demo part with gr.Blocks() as demo: # layout definition with gr.Row(): gr.Markdown(MARKDOWN) # UI components for editing real images with gr.Row(elem_classes=["container"]): selected_points = gr.State([]) # store points original_image = gr.State(value=None) # store original input image with gr.Row(): with gr.Column(): gr.Markdown("""

Click two Points

""") input_image = gr.Image(label="Input Image", height=HEIGHT, width=WIDTH, interactive=False, elem_id="input_img") # gr.Image(type="numpy", label="Click Points", height=HEIGHT, width=WIDTH, interactive=False) # for points clicking undo_button = gr.Button("Undo point") # Text prompt with gr.Row(): prompt = gr.Textbox(label="Text Prompt") with gr.Column(): gr.Markdown("""

Results

""") frames = gr.Video(value=None, label="Generate Video", show_label=True, height=HEIGHT, width=WIDTH) with gr.Row(): run_button = gr.Button("Run") clear_all_button = gr.Button("Clear All") # with gr.Tab("Base Model Config"): # with gr.Row(): # local_models_dir = 'local_pretrained_models' # local_models_choice = \ # [os.path.join(local_models_dir,d) for d in os.listdir(local_models_dir) if os.path.isdir(os.path.join(local_models_dir,d))] # model_path = gr.Dropdown(value="runwayml/stable-diffusion-v1-5", # label="Diffusion Model Path", # choices=[ # "runwayml/stable-diffusion-v1-5", # "gsdf/Counterfeit-V2.5", # "stablediffusionapi/anything-v5", # "SG161222/Realistic_Vision_V2.0", # ] + local_models_choice # ) # vae_path = gr.Dropdown(value="default", # label="VAE choice", # choices=["default", # "stabilityai/sd-vae-ft-mse"] + local_models_choice # ) # Examples with gr.Row(elem_classes=["container"]): gr.Examples( [ ["__assets__/Bridge_example/Task1_v1_511/im_0.jpg", "take this to there"], ["__assets__/Bridge_example/Task2_v2_164/im_0.jpg", "put this to there"], ["__assets__/Bridge_example/Task3_v2_490/im_0.jpg", "fold this"], ["__assets__/Bridge_example/Task4_v2_119/im_0.jpg", "open this"], # ["__assets__/0.jpg", "take this to there"], ["__assets__/91.jpg", "take this to there"], ["__assets__/156.jpg", "take this to there"], # ["__assets__/274.jpg", "take this to there"], ["__assets__/375.jpg", "take this to there"], # ["__assets__/551.jpg", "take this to there"], ], [input_image, prompt, selected_points], ) ####################################### Event Definition ####################################### # Draw the points input_image.select( get_points, [input_image, original_image, selected_points], [input_image, original_image], ) # Clean the points undo_button.click( undo_points, [original_image], [input_image, selected_points], ) run_button.click( gesturenet_inference, inputs = [ # vae, unet, gesturenet, image_encoder, text_encoder, tokenizer, original_image, prompt, selected_points, # frame_idxs, # config, accelerator, weight_dtype ], outputs = [frames] ) clear_all_button.click( clear_all, [], outputs = [original_image, input_image, prompt, selected_points], ) demo.queue().launch(share=True)