File size: 25,759 Bytes
7754b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from tokencut_dataset import SegmentationDataset, VAL_PARTITION, TRAIN_PARTITION
# Uncomment the expected model below
# ViT
from ViT.ViT import vit_base_patch16_224 as vit
# from ViT.ViT import vit_large_patch16_224 as vit
# ViT-AugReg
# from ViT.ViT_new import vit_small_patch16_224 as vit
# from ViT.ViT_new import vit_base_patch16_224 as vit
# from ViT.ViT_new import vit_large_patch16_224 as vit
# DeiT
# from ViT.ViT import deit_base_patch16_224 as vit
# from ViT.ViT import deit_small_patch16_224 as vit
from ViT.explainer import generate_relevance, get_image_with_relevance
import torchvision
import cv2
from torch.utils.tensorboard import SummaryWriter
import json
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
model_names.append("vit")
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DATA',
help='path to dataset')
parser.add_argument('--seg_data', metavar='SEG_DATA',
help='path to segmentation dataset')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=10, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=3e-6, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--save_interval', default=20, type=int,
help='interval to save segmentation results.')
parser.add_argument('--num_samples', default=3, type=int,
help='number of samples per class for training')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--lambda_seg', default=0.1, type=float,
help='influence of segmentation loss.')
parser.add_argument('--lambda_acc', default=1, type=float,
help='influence of accuracy loss.')
parser.add_argument('--experiment_folder', default=None, type=str,
help='path to folder to use for experiment.')
parser.add_argument('--dilation', default=0, type=float,
help='Use dilation on the segmentation maps.')
parser.add_argument('--lambda_background', default=1, type=float,
help='coefficient of loss for segmentation background.')
parser.add_argument('--lambda_foreground', default=0.3, type=float,
help='coefficient of loss for segmentation foreground.')
parser.add_argument('--num_classes', default=500, type=int,
help='coefficient of loss for segmentation foreground.')
parser.add_argument('--temperature', default=1, type=float,
help='temperature for softmax (mostly for DeiT).')
best_loss = float('inf')
def main():
args = parser.parse_args()
if args.experiment_folder is None:
args.experiment_folder = f'experiment/' \
f'lr_{args.lr}_seg_{args.lambda_seg}_acc_{args.lambda_acc}' \
f'_bckg_{args.lambda_background}_fgd_{args.lambda_foreground}'
if args.temperature != 1:
args.experiment_folder = args.experiment_folder + f'_tempera_{args.temperature}'
if args.batch_size != 8:
args.experiment_folder = args.experiment_folder + f'_bs_{args.batch_size}'
if args.num_classes != 500:
args.experiment_folder = args.experiment_folder + f'_num_classes_{args.num_classes}'
if args.num_samples != 3:
args.experiment_folder = args.experiment_folder + f'_num_samples_{args.num_samples}'
if args.epochs != 150:
args.experiment_folder = args.experiment_folder + f'_num_epochs_{args.epochs}'
if os.path.exists(args.experiment_folder):
raise Exception(f"Experiment path {args.experiment_folder} already exists!")
os.mkdir(args.experiment_folder)
os.mkdir(f'{args.experiment_folder}/train_samples')
os.mkdir(f'{args.experiment_folder}/val_samples')
with open(f'{args.experiment_folder}/commandline_args.txt', 'w') as f:
json.dump(args.__dict__, f, indent=2)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_loss
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
print("=> creating model")
model = vit(pretrained=True).cuda()
model.train()
print("done")
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
print("start")
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.AdamW(model.parameters(), args.lr, weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
if args.gpu is not None:
# best_loss may be from a checkpoint from a different GPU
best_loss = best_loss.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
train_dataset = SegmentationDataset(args.seg_data, args.data, partition=TRAIN_PARTITION, train_classes=args.num_classes,
num_samples=args.num_samples)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_dataset = SegmentationDataset(args.seg_data, args.data, partition=VAL_PARTITION, train_classes=args.num_classes,
num_samples=1)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=10, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion, 0, args)
return
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
log_dir = os.path.join(args.experiment_folder, 'logs')
logger = SummaryWriter(log_dir=log_dir)
args.logger = logger
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
loss1 = validate(val_loader, model, criterion, epoch, args)
# remember best acc@1 and save checkpoint
is_best = loss1 <= best_loss
best_loss = min(loss1, best_loss)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_loss': best_loss,
'optimizer' : optimizer.state_dict(),
}, is_best, folder=args.experiment_folder)
def train(train_loader, model, criterion, optimizer, epoch, args):
mse_criterion = torch.nn.MSELoss(reduction='mean')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
orig_top1 = AverageMeter('Acc@1_orig', ':6.2f')
orig_top5 = AverageMeter('Acc@5_orig', ':6.2f')
progress = ProgressMeter(
len(train_loader),
# [batch_time, data_time, losses, top1, top5, orig_top1, orig_top5],
[losses, top1, top5, orig_top1, orig_top5],
prefix="Epoch: [{}]".format(epoch))
orig_model = vit(pretrained=True).cuda()
orig_model.eval()
# switch to train mode
model.train()
end = time.time()
for i, (seg_map, image_ten, class_name) in enumerate(train_loader):
if torch.cuda.is_available():
image_ten = image_ten.cuda(args.gpu, non_blocking=True)
seg_map = seg_map.cuda(args.gpu, non_blocking=True)
class_name = class_name.cuda(args.gpu, non_blocking=True)
# compute output
# segmentation loss
relevance = generate_relevance(model, image_ten, index=class_name)
reverse_seg_map = seg_map.clone()
reverse_seg_map[reverse_seg_map == 1] = -1
reverse_seg_map[reverse_seg_map == 0] = 1
reverse_seg_map[reverse_seg_map == -1] = 0
background_loss = mse_criterion(relevance * reverse_seg_map, torch.zeros_like(relevance))
foreground_loss = mse_criterion(relevance * seg_map, seg_map)
segmentation_loss = args.lambda_background * background_loss
segmentation_loss += args.lambda_foreground * foreground_loss
# classification loss
output = model(image_ten)
with torch.no_grad():
output_orig = orig_model(image_ten)
_, pred = output.topk(1, 1, True, True)
pred = pred.flatten()
if args.temperature != 1:
output = output / args.temperature
classification_loss = criterion(output, pred)
loss = args.lambda_seg * segmentation_loss + args.lambda_acc * classification_loss
# debugging output
if i % args.save_interval == 0:
orig_relevance = generate_relevance(orig_model, image_ten, index=class_name)
for j in range(image_ten.shape[0]):
image = get_image_with_relevance(image_ten[j], torch.ones_like(image_ten[j]))
new_vis = get_image_with_relevance(image_ten[j], relevance[j])
old_vis = get_image_with_relevance(image_ten[j], orig_relevance[j])
gt = get_image_with_relevance(image_ten[j], seg_map[j])
h_img = cv2.hconcat([image, gt, old_vis, new_vis])
cv2.imwrite(f'{args.experiment_folder}/train_samples/res_{i}_{j}.jpg', h_img)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, class_name, topk=(1, 5))
losses.update(loss.item(), image_ten.size(0))
top1.update(acc1[0], image_ten.size(0))
top5.update(acc5[0], image_ten.size(0))
# metrics for original vit
acc1_orig, acc5_orig = accuracy(output_orig, class_name, topk=(1, 5))
orig_top1.update(acc1_orig[0], image_ten.size(0))
orig_top5.update(acc5_orig[0], image_ten.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % args.print_freq == 0:
progress.display(i)
args.logger.add_scalar('{}/{}'.format('train', 'segmentation_loss'), segmentation_loss,
epoch*len(train_loader)+i)
args.logger.add_scalar('{}/{}'.format('train', 'classification_loss'), classification_loss,
epoch * len(train_loader) + i)
args.logger.add_scalar('{}/{}'.format('train', 'orig_top1'), acc1_orig,
epoch * len(train_loader) + i)
args.logger.add_scalar('{}/{}'.format('train', 'top1'), acc1,
epoch * len(train_loader) + i)
args.logger.add_scalar('{}/{}'.format('train', 'orig_top5'), acc5_orig,
epoch * len(train_loader) + i)
args.logger.add_scalar('{}/{}'.format('train', 'top5'), acc5,
epoch * len(train_loader) + i)
args.logger.add_scalar('{}/{}'.format('train', 'tot_loss'), loss,
epoch * len(train_loader) + i)
def validate(val_loader, model, criterion, epoch, args):
mse_criterion = torch.nn.MSELoss(reduction='mean')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
orig_top1 = AverageMeter('Acc@1_orig', ':6.2f')
orig_top5 = AverageMeter('Acc@5_orig', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[losses, top1, top5, orig_top1, orig_top5],
prefix="Epoch: [{}]".format(val_loader))
# switch to evaluate mode
model.eval()
orig_model = vit(pretrained=True).cuda()
orig_model.eval()
with torch.no_grad():
end = time.time()
for i, (seg_map, image_ten, class_name) in enumerate(val_loader):
if args.gpu is not None:
image_ten = image_ten.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
seg_map = seg_map.cuda(args.gpu, non_blocking=True)
class_name = class_name.cuda(args.gpu, non_blocking=True)
# segmentation loss
with torch.enable_grad():
relevance = generate_relevance(model, image_ten, index=class_name)
reverse_seg_map = seg_map.clone()
reverse_seg_map[reverse_seg_map == 1] = -1
reverse_seg_map[reverse_seg_map == 0] = 1
reverse_seg_map[reverse_seg_map == -1] = 0
background_loss = mse_criterion(relevance * reverse_seg_map, torch.zeros_like(relevance))
foreground_loss = mse_criterion(relevance * seg_map, seg_map)
segmentation_loss = args.lambda_background * background_loss
segmentation_loss += args.lambda_foreground * foreground_loss
# classification loss
with torch.no_grad():
output = model(image_ten)
output_orig = orig_model(image_ten)
_, pred = output.topk(1, 1, True, True)
pred = pred.flatten()
if args.temperature != 1:
output = output / args.temperature
classification_loss = criterion(output, pred)
loss = args.lambda_seg * segmentation_loss + args.lambda_acc * classification_loss
# save results
if i % args.save_interval == 0:
with torch.enable_grad():
orig_relevance = generate_relevance(orig_model, image_ten, index=class_name)
for j in range(image_ten.shape[0]):
image = get_image_with_relevance(image_ten[j], torch.ones_like(image_ten[j]))
new_vis = get_image_with_relevance(image_ten[j], relevance[j])
old_vis = get_image_with_relevance(image_ten[j], orig_relevance[j])
gt = get_image_with_relevance(image_ten[j], seg_map[j])
h_img = cv2.hconcat([image, gt, old_vis, new_vis])
cv2.imwrite(f'{args.experiment_folder}/val_samples/res_{i}_{j}.jpg', h_img)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, class_name, topk=(1, 5))
losses.update(loss.item(), image_ten.size(0))
top1.update(acc1[0], image_ten.size(0))
top5.update(acc5[0], image_ten.size(0))
# metrics for original vit
acc1_orig, acc5_orig = accuracy(output_orig, class_name, topk=(1, 5))
orig_top1.update(acc1_orig[0], image_ten.size(0))
orig_top5.update(acc5_orig[0], image_ten.size(0))
if i % args.print_freq == 0:
progress.display(i)
args.logger.add_scalar('{}/{}'.format('val', 'segmentation_loss'), segmentation_loss,
epoch * len(val_loader) + i)
args.logger.add_scalar('{}/{}'.format('val', 'classification_loss'), classification_loss,
epoch * len(val_loader) + i)
args.logger.add_scalar('{}/{}'.format('val', 'orig_top1'), acc1_orig,
epoch * len(val_loader) + i)
args.logger.add_scalar('{}/{}'.format('val', 'top1'), acc1,
epoch * len(val_loader) + i)
args.logger.add_scalar('{}/{}'.format('val', 'orig_top5'), acc5_orig,
epoch * len(val_loader) + i)
args.logger.add_scalar('{}/{}'.format('val', 'top5'), acc5,
epoch * len(val_loader) + i)
args.logger.add_scalar('{}/{}'.format('val', 'tot_loss'), loss,
epoch * len(val_loader) + i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return losses.avg
def save_checkpoint(state, is_best, folder, filename='checkpoint.pth.tar'):
torch.save(state, f'{folder}/{filename}')
if is_best:
shutil.copyfile(f'{folder}/{filename}', f'{folder}/model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.85 ** (epoch // 2))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main() |