Spaces:
Running
Running
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from tensorflow.keras.models import load_model | |
import os | |
# Ensure the 'upload' directory exists | |
upload_folder = 'uploads' | |
if not os.path.exists(upload_folder): | |
os.makedirs(upload_folder) | |
# Load the pre-trained model | |
model = load_model("gender_detector.keras") | |
def get_result(img_path): | |
img = cv2.imread(img_path) | |
img_resize = cv2.resize(img, (224, 224)) | |
img_resize = np.array(img_resize, dtype=np.float32) | |
img_resize /= 255.0 | |
img_input = img_resize.reshape(1, 224, 224, 3) | |
prediction = model.predict(img_input) | |
if prediction[0][0] < 0.5: | |
return "He is a Man ๐น" | |
else: | |
return "She is a Woman ๐บ" | |
st.title("Let\'s detect the gender ๐น๐บ") | |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_image is not None: | |
image = Image.open(uploaded_image) | |
image_path = os.path.join(upload_folder, uploaded_image.name) | |
image.save(image_path) | |
output = get_result(image_path) | |
st.markdown(f"<h1 style='text-align: center; color: white;'>{output}</h1>", unsafe_allow_html=True) | |
st.image(image, use_container_width=True) | |