import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "BTS Members Classifier" # description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." #article="

Blog post

" examples = ['Jimin.jpg','Jung_Kook.jpg','J_Hope.jpg'] interpretation='default' enable_queue=True gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(128, 128)),outputs=gr.outputs.Label(),title=title,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()