Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,444 Bytes
27920f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet3DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (deprecate,
logging,
replace_example_docstring)
from diffusers.pipelines.text_to_video_synthesis import TextToVideoSDPipelineOutput
from torch.nn import functional as F
from diffusers.models.attention_processor import Attention
import math
TAU_2 = 15
TAU_1 = 10
def init_attention_params(unet, num_frames, lambda_=None, bs=None):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
module.processor.LAMBDA = lambda_
module.processor.bs = bs
module.processor.num_frames = num_frames
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0,
is_causal=False, scale=None, enable_gqa=False, k1 = None, d_l = None) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
if enable_gqa:
if k1 is not None and d_l is not None:
k1 = k1.repeat_interleave(query.size(-3)//k1.size(-3), -3)
key = key.repeat_interleave(query.size(-3)//key.size(-3), -3)
value = value.repeat_interleave(query.size(-3)//value.size(-3), -3)
if k1 is not None:
attn_k1 = query @ k1.transpose(-2, -1)
attn_weight = query @ key.transpose(-2, -1)
attn_weight[:,:len(d_l),0] = attn_k1[:,:len(d_l),0] * d_l
attn_weight = attn_weight * scale_factor
else:
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
class AttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query, key, d_l, k1 = self.get_qk(query, key)
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if d_l is not None:
k1 = k1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, k1 = k1, d_l = d_l
)
else:
hidden_states = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def get_qk(
self, query, key):
r"""
Compute the attention scores.
Args:
query (`torch.Tensor`): The query tensor.
key (`torch.Tensor`): The key tensor.
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
Returns:
`torch.Tensor`: The attention probabilities/scores.
"""
q_old = query.clone()
k_old = key.clone()
dynamic_lambda = None
key1 = None
if self.use_last_attn_slice:# and self.last_attn_slice[0].shape[0] == query.shape[0]:# and query.shape[1]==self.num_frames:
if self.last_attn_slice is not None:
query_list = self.last_attn_slice[0]
key_list = self.last_attn_slice[1]
if query.shape[1] == self.num_frames and query.shape == key.shape:
key1 = key.clone()
key1[:,:1,:key_list.shape[2]] = key_list[:,:1]
dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda()
if q_old.shape == k_old.shape and q_old.shape[1]!=self.num_frames:
batch_dim = query_list.shape[0] // self.bs
all_dim = query.shape[0] // self.bs
for i in range(self.bs):
query[i*all_dim:(i*all_dim) + batch_dim,:query_list.shape[1],:query_list.shape[2]] = query_list[i*batch_dim:(i+1)*batch_dim]
if self.save_last_attn_slice:
self.last_attn_slice = [
query,
key,
]
self.save_last_attn_slice = False
return query, key, dynamic_lambda, key1
def init_attention_func(unet):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
module.set_processor(AttnProcessor2_0())
module.processor.last_attn_slice = None
module.processor.use_last_attn_slice = False
module.processor.save_last_attn_slice = False
module.processor.LAMBDA = 0
module.processor.num_frames = None
module.processor.bs = 0
return unet
def use_last_self_attention(unet, use=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention" and "attn1" in name:
module.processor.use_last_attn_slice = use
def save_last_self_attention(unet, save=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention" and "attn1" in name:
module.processor.save_last_attn_slice = save
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import TextToVideoSDPipeline
>>> from diffusers.utils import export_to_video
>>> pipe = TextToVideoSDPipeline.from_pretrained(
... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "Spiderman is surfing"
>>> video_frames = pipe(prompt).frames[0]
>>> video_path = export_to_video(video_frames)
>>> video_path
```
"""
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
batch_size, channels, num_frames, height, width = video.shape
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
if output_type == "np":
outputs = np.stack(outputs)
elif output_type == "pt":
outputs = torch.stack(outputs)
elif not output_type == "pil":
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
return outputs
from diffusers import TextToVideoSDPipeline
class TextToVideoSDPipelineModded(TextToVideoSDPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet3DConditionModel,
scheduler: KarrasDiffusionSchedulers,
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
def call_network(self,
negative_prompt_embeds,
prompt_embeds,
latents,
inv_latents,
t,
i,
null_embeds,
cross_attention_kwargs,
extra_step_kwargs,
do_classifier_free_guidance,
guidance_scale,
):
inv_latent_model_input = inv_latents
inv_latent_model_input = self.scheduler.scale_model_input(inv_latent_model_input, t)
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if do_classifier_free_guidance:
noise_pred_uncond = self.unet(
latent_model_input,
t,
encoder_hidden_states=negative_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
noise_null_pred_uncond = self.unet(
inv_latent_model_input,
t,
encoder_hidden_states=negative_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if i<=TAU_2:
save_last_self_attention(self.unet)
noise_null_pred = self.unet(
inv_latent_model_input,
t,
encoder_hidden_states=null_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_null_pred = noise_null_pred_uncond + guidance_scale * (noise_null_pred - noise_null_pred_uncond)
bsz, channel, frames, width, height = inv_latents.shape
inv_latents = inv_latents.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
noise_null_pred = noise_null_pred.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
inv_latents = self.scheduler.step(noise_null_pred, t, inv_latents, **extra_step_kwargs).prev_sample
inv_latents = inv_latents[None, :].reshape((bsz, frames , -1) + inv_latents.shape[2:]).permute(0, 2, 1, 3, 4)
use_last_self_attention(self.unet)
else:
noise_null_pred = None
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds, # For unconditional guidance
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
use_last_self_attention(self.unet, False)
if do_classifier_free_guidance:
noise_pred_text = noise_pred
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# reshape latents
bsz, channel, frames, width, height = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# reshape latents back
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
return {
"latents": latents,
"inv_latents": inv_latents,
"noise_pred": noise_pred,
"noise_null_pred": noise_null_pred,
}
def optimize_latents(self, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds):
inv_scaled = self.scheduler.scale_model_input(inv_latents, t)
noise_null_pred = self.unet(
inv_scaled[:,:,0:1,:,:],
t,
encoder_hidden_states=null_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
with torch.enable_grad():
latent_train = latents[:,:,1:,:,:].clone().detach().requires_grad_(True)
optimizer = torch.optim.Adam([latent_train], lr=1e-3)
for j in range(10):
latent_in = torch.cat([inv_latents[:,:,0:1,:,:].detach(), latent_train], dim=2)
latent_input_unet = self.scheduler.scale_model_input(latent_in, t)
noise_pred = self.unet(
latent_input_unet,
t,
encoder_hidden_states=prompt_embeds, # For unconditional guidance
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
loss = torch.nn.functional.mse_loss(noise_pred[:,:,0,:,:], noise_null_pred[:,:,0,:,:])
loss.backward()
optimizer.step()
optimizer.zero_grad()
print("Iteration {} Subiteration {} Loss {} ".format(i, j, loss.item()))
latents = latent_in.detach()
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: int = 16,
num_inference_steps: int = 50,
guidance_scale: float = 9.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
inv_latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
lambda_ = 0.5,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated video.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated video.
num_frames (`int`, *optional*, defaults to 16):
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
amounts to 2 seconds of video.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
`(batch_size, num_channel, num_frames, height, width)`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"np"`):
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
of a plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
Returns:
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
num_images_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# # 2. Define call parameters
# if prompt is not None and isinstance(prompt, str):
# batch_size = 1
# elif prompt is not None and isinstance(prompt, list):
# batch_size = len(prompt)
# else:
# batch_size = prompt_embeds.shape[0]
batch_size = inv_latents.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
[prompt] * batch_size,
device,
num_images_per_prompt,
do_classifier_free_guidance,
[negative_prompt] * batch_size if negative_prompt is not None else None,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
null_embeds, negative_prompt_embeds = self.encode_prompt(
[""] * batch_size,
device,
num_images_per_prompt,
do_classifier_free_guidance,
[negative_prompt] * batch_size if negative_prompt is not None else None,
prompt_embeds=None,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
inv_latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
inv_latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
init_attention_func(self.unet)
print("Setup for Current Run")
print("----------------------")
print("Prompt ", prompt)
print("Batch size ", batch_size)
print("Num frames ", latents.shape[2])
print("Lambda ", lambda_)
init_attention_params(self.unet, num_frames=latents.shape[2], lambda_=lambda_, bs = batch_size)
iters_to_alter = [-1]#i for i in range(0, TAU_1)]
with self.progress_bar(total=num_inference_steps) as progress_bar:
mask_in = torch.zeros(latents.shape).to(dtype=latents.dtype, device=latents.device)
mask_in[:, :, 0, :, :] = 1
assert latents.shape[0] == inv_latents.shape[0], "Latents and Inverse Latents should have the same batch but got {} and {}".format(latents.shape[0], inv_latents.shape[0])
inv_latents = inv_latents.repeat(1,1,num_frames,1,1)
latents = inv_latents * mask_in + latents * (1-mask_in)
for i, t in enumerate(timesteps):
curr_copy = max(1,num_frames - i)
inv_latents = inv_latents[:,:,:curr_copy, :, : ]
if i in iters_to_alter:
latents = self.optimize_latents(latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds)
output_dict = self.call_network(
negative_prompt_embeds,
prompt_embeds,
latents,
inv_latents,
t,
i,
null_embeds,
cross_attention_kwargs,
extra_step_kwargs,
do_classifier_free_guidance,
guidance_scale,
)
latents = output_dict["latents"]
inv_latents = output_dict["inv_latents"]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# 8. Post processing
if output_type == "latent":
video = latents
else:
video_tensor = self.decode_latents(latents)
video = tensor2vid(video_tensor, self.image_processor, output_type)
# 9. Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return TextToVideoSDPipelineOutput(frames=video) |