Spaces:
Running
on
Zero
Running
on
Zero
# filter images | |
from PIL import Image, ImageSequence | |
import requests | |
from tqdm import tqdm | |
import numpy as np | |
import torch | |
from transformers import CLIPProcessor, CLIPModel | |
def sample_frame_indices(clip_len, frame_sample_rate, seg_len): | |
converted_len = int(clip_len * frame_sample_rate) | |
end_idx = np.random.randint(converted_len, seg_len) | |
start_idx = end_idx - converted_len | |
indices = np.linspace(start_idx, end_idx, num=clip_len) | |
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) | |
return indices | |
def load_frames(image: Image, mode='RGBA'): | |
return np.array([ | |
np.array(frame.convert(mode)) | |
for frame in ImageSequence.Iterator(image) | |
]) | |
img_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
img_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
def filter(gifs, input_image): | |
max_cosine = 0.9 | |
max_gif = [] | |
for gif in tqdm(gifs, total=len(gifs)): | |
with Image.open(gif) as im: | |
frames = load_frames(im) | |
frames = np.array(frames) | |
frames = frames[:, :, :, :3] | |
frames = np.transpose(frames, (0, 3, 1, 2))[1:] | |
image = Image.open(input_image) | |
inputs = img_processor(images=frames, return_tensors="pt", padding=False) | |
inputs_base = img_processor(images=image, return_tensors="pt", padding=False) | |
with torch.no_grad(): | |
feat_img_base = img_model.get_image_features(pixel_values=inputs_base["pixel_values"]) | |
feat_img_vid = img_model.get_image_features(pixel_values=inputs["pixel_values"]) | |
cos_avg = 0 | |
avg_score_for_vid = 0 | |
for i in range(len(feat_img_vid)): | |
cosine_similarity = torch.nn.functional.cosine_similarity( | |
feat_img_base, | |
feat_img_vid[0].unsqueeze(0), | |
dim=1) | |
# print(cosine_similarity) | |
cos_avg += cosine_similarity.item() | |
cos_avg /= len(feat_img_vid) | |
print("Current cosine similarity: ", cos_avg) | |
print("Max cosine similarity: ", max_cosine) | |
if cos_avg > max_cosine: | |
# max_cosine = cos_avg | |
max_gif.append(gif) | |
return max_gif |