Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install transformers[sentencepiece]
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
|
6 |
+
# Load the summarization & translation model pipeline
|
7 |
+
tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048',return_all_scores=True)
|
8 |
+
sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
|
9 |
+
#tokenizer = AutoTokenizer.from_pretrained('Howosn/Sentiment_Model', use_fast=False)
|
10 |
+
|
11 |
+
# Streamlit application title
|
12 |
+
st.title("Emotion analysis")
|
13 |
+
st.write("Turn Your Input Into Sentiment Score")
|
14 |
+
|
15 |
+
# Text input for the user to enter the text to analyze
|
16 |
+
text = st.text_area("Enter the text", "")
|
17 |
+
|
18 |
+
# Perform analysis result when the user clicks the "Analyse" button
|
19 |
+
if st.button("Analyse"):
|
20 |
+
# Perform text classification on the input text
|
21 |
+
trans_sum = tran_sum_pipe(text)[0]
|
22 |
+
results = sentiment_pipeline(trans_sum)[0]
|
23 |
+
|
24 |
+
# Display the classification result
|
25 |
+
max_score = float('-inf')
|
26 |
+
max_label = ''
|
27 |
+
|
28 |
+
for result in results:
|
29 |
+
if result['score'] > max_score:
|
30 |
+
max_score = result['score']
|
31 |
+
max_label = result['label']
|
32 |
+
|
33 |
+
st.write("Text:", text)
|
34 |
+
st.write("Label:", max_label)
|
35 |
+
st.write("Score:", max_score)
|