Spaces:
Runtime error
Runtime error
import gradio as gr | |
#import flask | |
#from tkinter import filedialog | |
import numpy as np | |
import pandas as pd | |
import csv | |
import librosa | |
import tensorflow as tf | |
#!gdown https://drive.google.com/uc?id=1hKQdsTZ35KQmNV9Zrqg-ksTLSmPapR53 | |
model = tf.keras.models.load_model('TTM_model.h5') | |
def config_audio(audio): | |
print('enter2') | |
header = 'ChromaSTFT RMS SpectralCentroid SpectralBandwidth Rolloff ZeroCrossingRate' | |
for i in range(1, 21): | |
header += f' mfcc{i}' | |
header += ' label' | |
header = header.split() | |
print(1) | |
file = open('predict_file.csv', 'w', newline='') | |
with file: | |
writer = csv.writer(file) | |
writer.writerow(header) | |
print(2) | |
#taalfile = audio | |
#print('stored in taalfile') | |
y, sr = librosa.load(audio, mono=True, duration=30) | |
print(3) | |
rms = librosa.feature.rms(y=y) | |
chroma = librosa.feature.chroma_stft(y=y, sr=sr) | |
spec_centroid = librosa.feature.spectral_centroid(y=y, sr=sr) | |
spec_bandwidth = librosa.feature.spectral_bandwidth(y=y, sr=sr) | |
rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr) | |
zcr = librosa.feature.zero_crossing_rate(y) | |
mfcc = librosa.feature.mfcc(y=y, sr=sr) | |
to_append = f' {np.mean(chroma)} {np.mean(rms)} {np.mean(spec_centroid)} {np.mean(spec_bandwidth)} {np.mean(rolloff)} {np.mean(zcr)} ' | |
for e in mfcc: | |
to_append += f' {np.mean(e)}' | |
#to_append += f' {t}' | |
file = open('predict_file.csv', 'a', newline='') | |
with file: | |
writer = csv.writer(file) | |
writer.writerow(to_append.split()) | |
predict_file = pd.read_csv("predict_file.csv") | |
X_predict = predict_file.drop('label', axis=1) | |
print('exit2') | |
return X_predict | |
def predict_audio(Input_Audio, Playable_Audio): | |
audio=Input_Audio.name | |
print('enter1') | |
X_predict = config_audio(audio) | |
taals = ['addhatrital','bhajani','dadra','deepchandi','ektal','jhaptal','rupak','trital'] | |
pred = model.predict(X_predict).flatten() | |
print('exit1') | |
return {taals[i]: float(pred[i]) for i in range(7)} | |
audio = gr.inputs.Audio(source="upload", optional=False) | |
label = gr.outputs.Label() | |
gr.Interface(predict_audio, ["file","audio"],outputs=label).launch(debug=True) |