import streamlit as st import requests from io import BytesIO from PIL import Image import os api_key = os.environ['API_KEY'] API_URL = "https://api-inference.huggingface.co/models/Hrishikesh332/autotrain-meme-classification-42897109437" headers = {"Authorization": f"Bearer {api_key}"} def query(data : bytes): # with open(filename, "rb") as f: # data = f.read() response = requests.post(API_URL, headers=headers, data=data) return response.json() st.markdown("

Memeter 💬

", unsafe_allow_html=True) st.markdown("---") with st.sidebar: st.title("Memometer") st.caption(''' Memeter is an application used for the classification of whether the images provided is meme or not meme ''', unsafe_allow_html=False) img = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"]) if img is not None: data = img.read() st.image(data) output = query(data) st.write("Predicted Output:", output)