File size: 39,503 Bytes
64212e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
# Import necessary packages and modules
from math import floor, ceil
import torch
from torch import nn
import torch.nn.functional as F
from axial_positional_embedding import AxialPositionalEmbedding
from einops import rearrange
from celle.utils import (
    exists,
    always,
    eval_decorator,
    gumbel_sample,
    top_k,
    gamma_func,
    DivideMax,
)
from tqdm import tqdm

# Import additional modules from within the codebase
from celle.transformer import Transformer


def generate_mask(gamma_func, batch_size, length, device):
    # Get the number of `True` values in the mask for each batch element
    num_true_values = floor(gamma_func(torch.rand(1)) * length)

    # Generate a random sample of indices to set to `True` in the mask
    # The number of indices in the sample is determined by `num_true_values`
    indices = (
        torch.rand((batch_size, length), device=device)
        .topk(num_true_values, dim=1)
        .indices
    )

    # Create a binary mask tensor with `True` values at the sampled indices
    mask = torch.zeros((batch_size, length), dtype=torch.bool, device=device)
    mask.scatter_(dim=1, index=indices, value=True)

    return mask


def match_batch_size(text, condition, image, batch_size):
    """
    This function ensures all inputs to the sample function have the same batch size.
    """
    if text.shape[0] != batch_size:
        text = text.repeat(batch_size, 1)

    if condition.shape[0] != batch_size:
        condition = condition.repeat(batch_size, 1)

    if image.shape[0] != batch_size:
        image = image.repeat(batch_size, 1)

    return text, condition, image


def calc_unmask_probs(timestep, timesteps, gamma_func):
    if timestep == 1 or timesteps == 1:
        unmask_prob = 1
    else:
        unmask_prob = 1 - gamma_func(timestep)
    return unmask_prob


def calculate_logits(
    input_tokens, input_mask, logits_function, filter_thres, temperature
):
    logits, _, _ = logits_function(input_tokens, input_mask, return_encoding=False)
    filtered_logits = top_k(logits, thres=filter_thres)
    sample = gumbel_sample(filtered_logits, temperature=temperature, dim=-1)

    return logits, sample


def unmask_tokens(
    input_tokens,
    input_mask,
    num_masked_tokens,
    logits,
    sample,
    timestep,
    timesteps,
    gamma,
    filter_func=None,
    pad_token=None,
    mask_token=None,
    force_aas=True,
):
    sample = sample.masked_fill(~input_mask.unsqueeze(-1), -torch.inf)
    if filter_func:
        sample = filter_func(
            input_tokens, sample, force_aas, pad_token=pad_token, mask_token=mask_token
        )
    selected_token_probs, selected_tokens = torch.max(sample, dim=-1)

    unmask_prob = calc_unmask_probs(timestep, timesteps, gamma)
    num_tokens_to_unmask = max(1, ceil(unmask_prob * num_masked_tokens))

    _, top_k_indices = torch.topk(selected_token_probs, num_tokens_to_unmask, dim=-1)

    sample_mask = torch.zeros(
        input_tokens.shape, dtype=torch.bool, device=input_tokens.device
    )
    sample_mask.scatter_(dim=1, index=top_k_indices, value=True)

    unmasked_tokens = torch.where(sample_mask, selected_tokens, input_tokens)
    full_logits = torch.where(
        sample_mask.unsqueeze(-1), logits, torch.zeros_like(logits)
    )
    return unmasked_tokens, full_logits


def suppress_invalid_text_tokens(
    text,
    logits,
    start_token=None,
    end_token=None,
    pad_token=None,
    mask_token=None,
    force_aas=False,
):
    # Find the indices of start_token and end_token in tensor text along axis=1
    idx_start = (text == start_token).nonzero(as_tuple=True)[1]
    idx_end = (text == end_token).nonzero(as_tuple=True)[1]

    # For every position other than the index corresponding to the start index, set the values on the start index of dimension=2 to -torch.inf
    if idx_start.nelement() != start_token:
        try:
            mask = idx_start.unsqueeze(1) != torch.arange(
                logits.size(1), device=text.device
            )
            indices = torch.where(mask)
            logits[indices[0], indices[1], start_token] = -torch.inf
        except:
            pass

    # else:
    #     idx_start = torch.zeros(text.size(0), dtype=torch.long)

    # Similarly, for every position other than the index corresponding to the end index, set the values on the end index of dimension=2 to -torch.inf
    if idx_end.nelement() != 0:
        try:
            mask = idx_end.unsqueeze(1) != torch.arange(
                logits.size(1), device=text.device
            )
            indices = torch.where(mask)
            logits[indices[0], indices[1], end_token] = -torch.inf
        except:
            pass

    # else:
    #     idx_end = torch.full((text.size(0),), text.size(1) - 1, dtype=torch.long)

    if pad_token:
        if idx_start.nelement() != 0 and idx_end.nelement() != 0:
            try:
                # For every position between the indices of start_token and end_token, set the values for 1st index of dimension=2 equal to -torch.inf. Any value outside of that range should be set to torch.inf.
                mask = (
                    torch.arange(logits.size(1), device=text.device)
                    >= idx_start.unsqueeze(1)
                ) & (
                    torch.arange(logits.size(1), device=text.device)
                    <= idx_end.unsqueeze(1)
                )

                indices = torch.where(mask)
                logits[indices[0], indices[1], pad_token] = -torch.inf

                indices = torch.where(~mask)
                logits[indices[0], indices[1], pad_token] = torch.inf

            except:
                pass

        elif idx_start.nelement() != 0:
            try:
                mask = torch.arange(
                    logits.size(1), device=text.device
                ) < idx_start.unsqueeze(1)
                logits[indices[0], indices[1], pad_token] = torch.inf
            except:
                pass

        elif idx_end.nelement() != 0:
            try:
                mask = torch.arange(
                    logits.size(1), device=text.device
                ) > idx_end.unsqueeze(1)
                logits[indices[0], indices[1], pad_token] = torch.inf
            except:
                pass

    if force_aas:
        if pad_token:
            logits[:, :, pad_token] = -torch.inf
        logits[:, :, 3] = -torch.inf
        logits[:, :, 29:] = -torch.inf

    if mask_token:
        logits[:, :, mask_token] = -torch.inf

    return logits


def detokenize_text(text_embedding, sequence):
    if text_embedding == "esm1b" or text_embedding == "esm2":
        from esm import Alphabet

        alphabet = (
            Alphabet.from_architecture("ESM-1b").get_batch_converter().alphabet.all_toks
        )
    else:
        assert NameError("Detokenization only available for ESM mdodels")

    output_seqs = []

    for batch in sequence:
        converted_seq = [alphabet[idx] for idx in batch]
        converted_seq = "".join(converted_seq)
        output_seqs.append(converted_seq)

    return output_seqs

class ImageEmbedding(nn.Module):
    def __init__(self, num_tokens, dim):
        super(ImageEmbedding, self).__init__()
        self.image_embedding = nn.Embedding(num_tokens, dim)
        
    def forward(self, image):
        return self.image_embedding(image)


class ModelExtender(nn.Module):
    def __init__(self, vocab, out_features, fixed_embedding=False):
        super(ModelExtender, self).__init__()

        # Initialize the model according to the given vocabulary
        self.vocab = vocab
        
        if vocab == "esm1b":
            from esm import pretrained

            self.model, _ = pretrained.esm1b_t33_650M_UR50S()
            self.in_features = 1280
        elif vocab == "esm2":
            from esm import pretrained

            if out_features == 320:
                self.model, _ = pretrained.esm2_t6_8M_UR50D()
            elif out_features == 480:
                self.model, _ = pretrained.esm2_t12_35M_UR50D()
            elif out_features == 640:
                self.model, _ = pretrained.esm2_t30_150M_UR50D()
            elif out_features == 1280:
                self.model, _ = pretrained.esm2_t33_650M_UR50D()
            elif out_features == 2560:
                self.model, _ = pretrained.esm2_t36_3B_UR50D()
            else:
                self.model, _ = pretrained.esm2_t33_650M_UR50D()
            self.in_features = self.model.embed_dim

        # Set the number of output features and initialize the scaling layer
        self.out_features = out_features
        self.scale_layer = nn.Linear(self.in_features, self.out_features)

        # Determine whether to freeze the model's parameters
        self.fixed_embedding = fixed_embedding
        if self.fixed_embedding:
            self.model = self.model.eval()

    def forward(self, x, **kwargs):
        # If the model's parameters are fixed, use torch.no_grad()
        if self.fixed_embedding:
            with torch.no_grad():
                if self.vocab == "esm1b" or self.vocab == "esm2":
                    # Reduce sequence length dimension, get top layer representation tensor
                    x = self.model(x.squeeze(1), repr_layers=[self.model.num_layers])[
                        "representations"
                    ][self.model.num_layers]
                    # Tensor shape: (batch_size, hidden_size)
                else:
                    # Get top layer representation tensor
                    x = self.model(x, **kwargs)[0]
                    # Tensor shape: (batch_size, sequence_length, hidden_size)
        else:
            if self.vocab == "esm1b" or self.vocab == "esm2":
                # Reduce sequence length dimension, get top layer representation tensor
                x = self.model(x.squeeze(1), repr_layers=[self.model.num_layers])[
                    "representations"
                ][self.model.num_layers]
                # Tensor shape: (batch_size, hidden_size)
            else:
                # Get top layer representation tensor
                x = self.model(x, **kwargs)[0]
                # Tensor shape: (batch_size, sequence_length, hidden_size)

        # Scale the representation tensor if necessary
        if self.out_features != self.in_features:
            x = self.scale_layer(x)
            # Tensor shape: (batch_size, out_features)

        return x

class CELLE(nn.Module):
    def __init__(
        self,
        *,
        dim,
        vae,  # The VAE model used to encode/decode images
        condition_vae=None,  # An optional VAE model used to condition the image generation
        num_images=2,  # Number of images to generate
        num_text_tokens=30,  # Number of tokens in the text vocabulary
        text_seq_len=1000,  # Maximum length of input text sequence
        depth=16,  # Number of layers in the transformer model
        heads=16,  # Number of attention heads
        dim_head=64,  # Dimensionality of each attention head
        attn_dropout=0.1,  # Dropout rate for attention weights
        ff_dropout=0.1,  # Dropout rate for feedforward layers
        attn_types=None,  # Types of attention to use in the transformer
        causal=False,  # Whether to use causal attention
        loss_cond_weight=1,  # Weight of conditioning loss
        loss_img_weight=1,  # Weight of image generation loss
        stable=False,  # Whether to use divide-by-max normalization in the transformer
        rotary_emb=True,  # Whether to use rotary positional embeddings
        text_embedding="esm2",  # Text embedding to use (esm1b, esm2)
        fixed_embedding=True,  # Whether to fix the text embedding or learn it
        sampling_mode="cosine",  # Sampling mode for the VAE
        linear_project=False,  # Whether to project embeddings linearly
        **kwargs,
    ):
        super().__init__()

        # Set the stable flag
        self.stable = stable

        # If the stable flag is set, initialize the DivideMax layer for normalization
        if stable:
            self.norm_by_max = DivideMax(dim=-1)

        ### Initializing text parameters ###

        # Initialize the text and fixed embeddings
        self.text_embedding = text_embedding
        self.fixed_embedding = fixed_embedding

        # Offset logits index and calculate cross entropy loss
        self.num_text_tokens = num_text_tokens
        self.linear_project = linear_project

        # Add <BOS> and <EOS> tokens to the beginning and end of text sequences
        if text_embedding.lower() in ("esm1b", "esm2"):
            self.text_seq_len = text_seq_len + 2
        else:
            self.text_seq_len = text_seq_len

        # Initialize embeddings for <SEP> token
        self.sep_emb = nn.Embedding(1, dim)

        # Initialize positional embeddings for text sequences and <SEP> token
        self.text_pos_emb = (
            nn.Embedding(self.text_seq_len + 1, dim) if not rotary_emb else always(0)
        )  # +1 for <SEP>

        ### ###

        self.num_images = num_images

        ### Initializing condition parameters ###

        # Initialize the number of condition tokens, condition sequence length, and condition embedding
        if exists(condition_vae):
            condition_size = condition_vae.image_size
            num_condition_tokens = condition_vae.num_tokens
            self.num_condition_tokens = num_condition_tokens
            condition_fmap_size = condition_vae.image_size // (
                2**condition_vae.num_layers
            )
            condition_seq_len = condition_fmap_size**2

            # Initialize ImageEmbedding for condition embedding
            self.condition_emb = ImageEmbedding(num_condition_tokens + 1, dim)

            # Initialize positional embeddings for condition embedding
            self.condition_pos_emb = (
                AxialPositionalEmbedding(
                    dim, axial_shape=(condition_fmap_size, condition_fmap_size)
                )
                if not rotary_emb
                else always(0)
            )

        else:
            condition_fmap_size = 0
            condition_seq_len = 0
            num_condition_tokens = 0

        ### ####

        ### Initializing image parameters ###

        # Initialize the image size, image token size, and sequence length
        self.image_size = vae.image_size
        num_image_tokens = vae.num_tokens
        image_fmap_size = vae.image_size // (2**vae.num_layers)
        image_seq_len = image_fmap_size**2
        self.image_seq_len = image_seq_len
        self.num_image_tokens = num_image_tokens

        # Initialize ImageEmbedding and positional embeddings for image embedding
        self.image_emb = ImageEmbedding(num_image_tokens + 1, dim) # +1 for <IM_MASK>

        self.image_pos_emb = (
            AxialPositionalEmbedding(
                dim, axial_shape=(image_fmap_size, image_fmap_size)
            )
            if not rotary_emb
            else always(0)
        )

        # Set total sequence length and total tokens
        self.num_condition_tokens = num_condition_tokens
        self.condition_seq_len = condition_seq_len
        # Text Length + <SEP> + Condition Tokens + Image Tokens
        seq_len = self.text_seq_len + 1 + self.condition_seq_len + self.image_seq_len
        total_tokens = (
            num_text_tokens + 1 + num_condition_tokens + 1 + num_image_tokens + 1
        )
        self.total_tokens = total_tokens
        self.total_seq_len = seq_len

        # Set the VAE and condition VAE for the model
        self.vae = vae.eval()
        self.condition_vae = condition_vae.eval()

        ### ###

        ### Setting discrete ids ###
        # Initialize text embedding based on the given text_embedding parameter
        if text_embedding == "esm1b" or text_embedding == "esm2":
            self.text_mask_token = 32
            self.pad_token = 1
            self.text_emb = ModelExtender(text_embedding, dim, fixed_embedding)
        else:
            raise ValueError("Only ESM models are supported.")

        # Set token indices for text, condition, and image sequences
        self.sep_token = num_text_tokens
        self.cond_mask_token = num_condition_tokens
        self.image_mask_token = num_image_tokens

        # Create indices for sequence and logits dimensions
        self.seq_range = torch.arange(seq_len)
        self.logits_range = torch.arange(total_tokens)

        # Reshape sequence and logits indices
        self.seq_range = rearrange(self.seq_range, "n -> () n ()")
        self.logits_range = rearrange(self.logits_range, "d -> () () d")

        # Create a mask to exclude invalid token positions from the model output
        # e.g. no image tokens where sequence tokens should be
        logits_mask = (
            # Mask text tokens beyond text_seq_len and invalid logits_range
            (
                (self.seq_range < self.text_seq_len)
                & (self.logits_range < num_text_tokens)
                & (self.logits_range != self.text_mask_token)
            )
            |
            # Mask [SEP] token after text
            (
                (self.seq_range == self.text_seq_len)
                & (self.logits_range == num_text_tokens)
            )
            |
            # Mask condition tokens beyond text_seq_len+1 ([SEP]) and invalid logits_range
            (
                (self.seq_range >= self.text_seq_len + 1)
                & (self.seq_range < self.text_seq_len + 1 + condition_seq_len)
                & (self.logits_range >= num_text_tokens + 1)
                & (self.logits_range < num_text_tokens + 1 + num_condition_tokens)
            )
            |
            # Mask image tokens beyond num_text_tokens+num_condition_tokens+1
            (
                (self.seq_range >= self.text_seq_len + 1 + condition_seq_len)
                & (self.logits_range >= num_text_tokens + 1 + num_condition_tokens + 1)
                & (
                    self.logits_range
                    < num_text_tokens + 1 + num_condition_tokens + 1 + num_image_tokens
                )
            )
        )

        # Invert the mask
        logits_mask = ~logits_mask

        # Register the buffer with the logits_mask
        self.register_buffer("logits_mask", logits_mask, persistent=False)

        ### ###

        # Initialize the Transformer model with given parameters
        self.transformer = Transformer(
            dim=dim,
            causal=causal,
            seq_len=seq_len,
            depth=depth,
            heads=heads,
            dim_head=dim_head,
            attn_dropout=attn_dropout,
            ff_dropout=ff_dropout,
            image_fmap_size=image_fmap_size + condition_fmap_size,
            num_images=num_images,
            stable=stable,
            rotary_emb=rotary_emb,
        )

        # Initialize the linear layers for converting transformer output to logits
        self.to_logits = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, self.total_tokens),
        )

        # Set instance variables for weights and critic
        self.loss_img_weight = loss_img_weight
        self.loss_cond_weight = loss_cond_weight
        self.gamma = gamma_func(sampling_mode)

    def embed_and_transform(self, inputs, masks, return_encoding=False):
        text, condition, image = inputs
        device = text.device
        text_mask, _, image_mask = masks

        text_labels = text.clone()
        text = torch.where(
            text_mask, self.text_mask_token * torch.ones_like(text, device=device), text
        )

        tokens = self.text_emb(text)

        # Add SEP token

        sep_token_emb = self.sep_emb(
            torch.zeros((tokens.shape[0], 1), dtype=torch.long, device=device)
        )
        tokens = torch.cat((tokens, sep_token_emb), dim=1)
        tokens += self.text_pos_emb(torch.arange(text.shape[1] + 1, device=device))

        with torch.no_grad():
            if self.linear_project:
                b = condition.shape[0]
                condition, _, [_, _, condition_labels] = self.condition_vae.encode(
                    condition
                )
                condition_labels = rearrange(condition_labels, "(b n) -> b n", b=b)

            else:
                condition_labels = condition
                if condition.dtype == torch.float:
                    condition_labels = self.condition_vae.get_codebook_indices(
                        condition
                    )
                condition = condition_labels.clone()

        condition_emb = self.condition_emb(condition)
        condition_emb += self.condition_pos_emb(condition_emb)
        tokens = torch.cat((tokens, condition_emb), dim=1)

        with torch.no_grad():
            if self.linear_project:
                b = image.shape[0]
                image, _, [_, _, image_labels] = self.vae.encode(image)
                image_labels = rearrange(image_labels, "(b n) -> b n", b=b)

            else:
                image_labels = image
                if image.dtype == torch.float:
                    image_labels = self.vae.get_codebook_indices(image)
                image = torch.where(
                    image_mask,
                    self.image_mask_token
                    * torch.ones_like(image_labels, device=device),
                    image_labels,
                )

        image_emb = self.image_emb(image)

        image_emb += self.image_pos_emb(image_emb)
        tokens = torch.cat((tokens, image_emb), dim=1)

        if self.stable:
            alpha = 0.1
            tokens = tokens * alpha + tokens.detach() * (1 - alpha)

        out = self.transformer(tokens)

        if self.stable:
            out = self.norm_by_max(out)

        logits = self.to_logits(out)

        max_neg_value = -torch.finfo(logits.dtype).max
        logits.masked_fill_(self.logits_mask, max_neg_value)

        if return_encoding:
            return logits, out, [text_labels, condition_labels, image_labels]
        else:
            return logits, None, [text_labels, condition_labels, image_labels]

    def forward(
        self,
        text,
        condition=None,
        image=None,
        return_loss=False,
        return_encoding=False,
    ):
        batch_size, device = text.shape[0], text.device

        # Check that image is supplied when training
        assert exists(image), "when training, image must be supplied"

        # Check that image dimensions match the expected dimensions
        assert tuple(image.shape[1:]) == (
            self.vae.channels,
            self.image_size,
            self.image_size,
        ), f"invalid image of dimensions {image.shape} passed in during training"

        # Generate masks for text, condition, and image

        # text_mask = generate_mask(self.gamma, batch_size, self.text_seq_len, device)

        text_mask = generate_mask(
            gamma_func("scaled-cosine"), batch_size, self.text_seq_len, device
        )

        image_mask = generate_mask(self.gamma, batch_size, self.image_seq_len, device)

        # Embed and transform inputs
        logits, _, labels = self.embed_and_transform(
            [text, condition, image],
            [text_mask, None, image_mask],
            return_encoding,
            device,
        )

        # If not returning loss, return the logits
        if not return_loss:
            return logits

        # Separate labels
        text, condition, image = labels

        # Add SEP token to end of text label
        sep_token = torch.tensor(self.sep_token, device=device).repeat(
            labels.shape[0], 1
        )
        labels = torch.cat([labels, sep_token], dim=1)

        # If condition exists and condition vae is defined, add the condition to the labels
        if exists(condition) and exists(self.condition_vae):
            offsetted_condition = condition + self.num_text_tokens + 1
            labels = torch.cat((labels, offsetted_condition), dim=1)

        # Add image to the labels
        offsetted_image = (
            image + self.num_text_tokens + 1 + self.num_condition_tokens + 1
        )
        labels = torch.cat((labels, offsetted_image), dim=1)

        # Rearrange logits for cross-entropy loss calculation
        # Logits size: (batch_size, vocab_size, total_seq_len)
        # Labels size: (batch_size, total_seq_len)
        logits = rearrange(logits, "b n c -> b c n")

        # Calculate cross-entropy loss for text and image
        loss_text = F.cross_entropy(
            logits[:, :, : self.text_seq_len],
            labels[:, : self.text_seq_len],
            reduction="none",
        )[text_mask].mean()

        loss_img = F.cross_entropy(
            logits[:, :, self.text_seq_len + 1 + self.condition_seq_len :],
            labels[:, self.text_seq_len + 1 + self.condition_seq_len :],
            reduction="none",
        )[image_mask].mean()

        # Calculate total loss
        loss = (loss_text + self.loss_img_weight * loss_img) / (
            self.loss_img_weight + 1
        )

        loss_dict = {
            "loss_text": loss_text,
            # "loss_cond": loss_cond,
            "loss_img": loss_img,
            "loss": torch.nan_to_num(loss, 0.0, 0.0, 0.0),
        }

        return loss, loss_dict, None

    def create_tensors(self, text, condition, image):
        """
        This function creates tensors for text, condition, and image when they are not provided as inputs to the sample function.
        """
        device = next(
            filter(lambda x: isinstance(x, torch.Tensor), [text, condition, image]),
            None,
        ).device

        if not isinstance(text, torch.Tensor):
            text = (
                torch.ones(1, self.text_seq_len, device=device, dtype=torch.long)
                * self.text_mask_token
            )

        if not isinstance(condition, torch.Tensor):
            condition = (
                torch.ones(1, self.condition_seq_len, device=device, dtype=torch.long)
                * self.cond_mask_token
            )
        else:
            with torch.no_grad():
                condition = self.condition_vae.get_codebook_indices(condition)

        if not isinstance(image, torch.Tensor):
            image = (
                torch.ones(1, self.image_seq_len, device=device, dtype=torch.long)
                * self.image_mask_token
            )
        else:
            with torch.no_grad():
                image = self.vae.get_codebook_indices(image)

        return text, condition, image

    @torch.no_grad()
    @eval_decorator
    def sample(
        self,
        text=None,
        condition=None,
        image=None,
        temperature=1.0,
        filter_thres=0.9,
        progress=False,
        timesteps=1,
        force_aas=True,
    ):
        # ensure timesteps is a positive integer
        assert int(timesteps) > 0
        # set model and VAEs to evaluation mode
        self.eval()
        vae = self.vae.eval()
        if progress == True:
            progress = tqdm
        else:
            progress = lambda x: x


        # ensure that at least one of text, condition, or image is supplied
        assert (
            isinstance(text, torch.Tensor)
            or isinstance(condition, torch.Tensor)
            or isinstance(image, torch.Tensor)
        ), "some data must be supplied"

        # convert text, condition, and image to tensors if they aren't already
        text, condition, image = self.create_tensors(text, condition, image)

        # determine the maximum batch size of the input tensors
        batch_size = max(text.shape[0], condition.shape[0], image.shape[0])

        # match the batch sizes of text, condition, and image
        text, condition, image = match_batch_size(text, condition, image, batch_size)

        # determine the device of the tensors
        device = next(
            filter(lambda x: isinstance(x, torch.Tensor), [text, condition, image]),
            None,
        ).device

        assert text.shape[0] == condition.shape[0] == image.shape[0]

        # Create a tensor of zeros of size (batch_size, image_seq_len, num_image_tokens + 1) and set it to device

        # full_text_logits = torch.zeros(batch_size, self.text_seq_len, self.num_text_tokens+3).to(device)
        full_text_logits = torch.zeros(
            batch_size, self.text_seq_len, self.num_text_tokens
        ).to(device)

        # Use scatter_ to fill the tensor with 1 values at the indices given by the image tensor
        full_text_logits = full_text_logits.scatter_(
            dim=-1, index=text.unsqueeze(-1), value=1
        )
        # Use scatter_ to fill the tensor with 1 values at the indices given by the image tensor
        full_image_logits = torch.zeros(
            batch_size, self.image_seq_len, self.num_image_tokens + 1
        ).to(device)

        # Remove the last token from each image sequence by setting full_image_logits to its first num_image_tokens elements
        full_image_logits = full_image_logits.scatter_(
            dim=-1, index=image.unsqueeze(-1), value=1
        )

        # cut off mask token
        full_image_logits = full_image_logits[:, :, : self.num_image_tokens]

        count = 0

        for timestep in progress(torch.linspace(0, 1, timesteps)):
            # Create masks for the text, condition, and image tensors
            text_mask = text == self.text_mask_token
            cond_mask = condition == self.cond_mask_token
            image_mask = image == self.image_mask_token

            # Calculate logits and samples using the calculate_logits function
            logits, sample = calculate_logits(
                [text, condition, image],
                [text_mask, cond_mask, image_mask],
                self.embed_and_transform,
                filter_thres,
                temperature,
            )

            # Calculate the number of masked tokens in the text and image tensors
            num_masked_text_tokens = torch.sum(text_mask, dim=1)[0]
            num_masked_image_tokens = torch.sum(image_mask, dim=1)[0]

            # If there are masked text tokens, unmask them using unmask_tokens and fill the full text logits tensor with -inf for unmasked tokens
            if num_masked_text_tokens.any() > 0:
                text, full_text_logits = unmask_tokens(
                    text,
                    text_mask,
                    num_masked_text_tokens,
                    logits[:, : self.text_seq_len, : self.num_text_tokens],
                    sample[:, : self.text_seq_len, : self.num_text_tokens],
                    timestep,
                    timesteps,
                    self.gamma,
                    suppress_invalid_text_tokens,
                    self.pad_token,
                    self.text_mask_token,
                    force_aas=force_aas,
                )
                full_text_logits = full_text_logits.masked_fill(
                    ~text_mask.unsqueeze(-1), -torch.inf
                )

            # If there are masked image tokens, unmask them using unmask_tokens and fill the full image logits tensor with -inf for unmasked tokens
            if num_masked_image_tokens > 0:
                image, full_image_logits = unmask_tokens(
                    image,
                    image_mask,
                    num_masked_image_tokens,
                    logits[:, -self.image_seq_len :, -(self.num_image_tokens + 1) : -1],
                    sample[:, -self.image_seq_len :, -(self.num_image_tokens + 1) : -1],
                    timestep,
                    timesteps,
                    self.gamma,
                )
                full_text_logits = full_text_logits.masked_fill(
                    ~text_mask.unsqueeze(-1), -torch.inf
                )
                
        # Generate heatmap
        with torch.no_grad():
            # Normalize full image logits tensor
            full_image_logits /= torch.max(
                torch.abs(full_image_logits), dim=-1, keepdim=True
            ).values

            # Apply quantize embedding to full image logits tensor
            full_image_logits = torch.matmul(
                full_image_logits, self.vae.model.quantize.embedding.weight
            )

            # Rearrange full image logits tensor
            h = int(self.image_seq_len**0.5)
            full_image_logits = rearrange(
                full_image_logits, "b (h w) c -> b c h w", h=h
            )

            # Decode full image logits tensor
            full_image_logits = self.vae.model.decode(full_image_logits)

            # Add clipping to full image logits tensor
            max_val = torch.max(full_image_logits.view(batch_size, -1), dim=-1)[0]
            min_val = torch.min(full_image_logits.view(batch_size, -1), dim=-1)[0]
            full_image_logits += torch.clip(1 - max_val, 0, float("inf")).view(
                batch_size, 1, 1, 1
            )
            full_image_logits += torch.clip(0 - min_val, float("-inf"), 0).view(
                batch_size, 1, 1, 1
            )

            # Clip full image logits tensor values to the range [0, 1]
            full_image_logits = torch.clip(full_image_logits, 0, 1)

        # Return text tensor, detokenized text tensor, full text logits tensor,
        # binary image tensor, and full image logits tensor
        return (
            text,
            detokenize_text(self.text_embedding, text),
            full_text_logits,
            1.0 * (vae.decode(image) > 0.5),
            full_image_logits,
        )

    @torch.no_grad()
    @eval_decorator
    def sample_text(
        self,
        text=False,
        condition=False,
        image=False,
        temperature=1.0,
        filter_thres=0.9,
        progress=False,
        n_unmask=1,
        place_amino=True,
        force_aas=False,
    ):
        # set model and VAEs to evaluation mode
        self.eval()

        # ensure that at least one of text, condition, or image is supplied
        assert (
            isinstance(text, torch.Tensor)
            or isinstance(condition, torch.Tensor)
            or isinstance(image, torch.Tensor)
        ), "some data must be supplied"

        # convert text, condition, and image to tensors if they aren't already
        text, condition, image = self.create_tensors(text, condition, image)

        # determine the maximum batch size of the input tensors
        batch_size = max(text.shape[0], condition.shape[0], image.shape[0])

        # match the batch sizes of text, condition, and image
        text, condition, image = match_batch_size(text, condition, image, batch_size)

        # determine the device of the tensors
        device = next(
            filter(lambda x: isinstance(x, torch.Tensor), [text, condition, image]),
            None,
        ).device

        assert text.shape[0] == condition.shape[0] == image.shape[0]

        # Create a tensor of zeros of size (batch_size, image_seq_len, num_image_tokens + 1) and set it to device

        # full_text_logits = torch.zeros(batch_size, self.text_seq_len, self.num_text_tokens+3).to(device)
        full_text_logits = torch.zeros(
            batch_size, self.text_seq_len, self.num_text_tokens
        ).to(device)

        # Use scatter_ to fill the tensor with 1 values at the indices given by the image tensor
        full_text_logits = full_text_logits.scatter_(
            dim=-1, index=text.unsqueeze(-1), value=1
        )

        text_mask = text == self.text_mask_token
        cond_mask = condition == self.cond_mask_token
        image_mask = image == self.image_mask_token

        mask_indices = text_mask.nonzero()
        non_mask_indices = (~text_mask).nonzero()

        # figure out the center of the amino acids to determine generation direction
        central_protein_index = torch.tensor(
            [
                torch.median(
                    non_mask_indices[torch.where(non_mask_indices[:, 0] == idx)][:, -1]
                )
                for idx in range(batch_size)
            ]
        )

        count = 1

        run_mask = text_mask
        if progress:
            pbar = progress(total=torch.sum(run_mask).item())
        while torch.sum(run_mask) > 0:
            logits, sample = calculate_logits(
                [text, condition, image],
                [text_mask, cond_mask, image_mask],
                self.embed_and_transform,
                filter_thres,
                temperature,
            )

            # sub_sample: [batch_size ,text_seq_len ,num_text_tokens]
            sub_sample = sample[:, : self.text_seq_len, : self.num_text_tokens]
            sub_sample = sub_sample.masked_fill(~text_mask.unsqueeze(-1), -torch.inf)
            sub_sample = suppress_invalid_text_tokens(
                text, sub_sample, 0, 2, self.pad_token, self.text_mask_token, force_aas
            )
            # calculate % to  unmasked
            # get most likely token and probability for each position

            for idx in range(batch_size):
                selected_mask_indices = mask_indices[
                    torch.where(mask_indices[:, 0] == idx)
                ][:, -1]

                # Generate to the left
                if selected_mask_indices[-count] < central_protein_index[idx]:
                    unmask_index = selected_mask_indices[-count]
                    left_sample = max(0, (unmask_index + 1) - n_unmask)
                    right_sample = min(unmask_index + 1, self.text_seq_len - 1)
                    central_protein_index[idx] = max(
                        0, central_protein_index[idx] - 0.5 * n_unmask
                    )

                # Generate to the right
                elif selected_mask_indices[count - 1] > central_protein_index[idx]:
                    unmask_index = selected_mask_indices[count - 1]
                    left_sample = max(0, unmask_index)
                    right_sample = min(unmask_index + n_unmask, self.text_seq_len - 1)
                    central_protein_index[idx] = min(
                        central_protein_index[idx] + 0.5 * n_unmask,
                        self.text_seq_len - 1,
                    )

                # save logits for relevant position
                full_text_logits[
                    idx, left_sample:right_sample, : self.text_seq_len - 1
                ] = logits[idx, left_sample:right_sample, : self.num_text_tokens]

                run_mask[idx, left_sample:right_sample] = False

                # you may want to resample the amion acids or calculate marginal probs
                # if so, set place_amino to false
                if place_amino:
                    text[idx, left_sample:right_sample] = torch.where(
                        text[idx, left_sample:right_sample] == self.text_mask_token,
                        sub_sample[
                            idx, left_sample:right_sample, : self.num_text_tokens
                        ].argmax(dim=-1),
                        text[idx, left_sample:right_sample],
                    )

                    text_mask = run_mask

            count += n_unmask
            
            if progress:
                pbar.update(n_unmask)
        if progress:
            pbar.close()

        return (
            text,
            detokenize_text(self.text_embedding, text),
            full_text_logits,
        )