File size: 20,288 Bytes
5d2263b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
import os
import numpy as np
import torch
import torch.random
from torch.optim import AdamW
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
from dataloader import CellLoader
from celle import VQGanVAE, CELLE
from omegaconf import OmegaConf
import argparse, os, sys, datetime, glob
from celle.celle import gumbel_sample, top_k
torch.random.manual_seed(42)
np.random.seed(42)
from celle_taming_main import (
instantiate_from_config,
nondefault_trainer_args,
get_parser,
)
class CellDataModule(pl.LightningDataModule):
def __init__(
self,
data_csv,
dataset,
sequence_mode="standard",
vocab="bert",
crop_size=256,
resize=600,
batch_size=1,
threshold="median",
text_seq_len=1000,
num_workers=1,
**kwargs,
):
super().__init__()
self.data_csv = data_csv
self.dataset = dataset
self.protein_sequence_length = 0
self.image_folders = []
self.crop_size = crop_size
self.resize = resize
self.batch_size = batch_size
self.sequence_mode = sequence_mode
self.threshold = threshold
self.text_seq_len = int(text_seq_len)
self.vocab = vocab
self.num_workers = num_workers if num_workers is not None else batch_size * 2
def setup(self, stage=None):
# called on every GPU
self.cell_dataset_train = CellLoader(
data_csv=self.data_csv,
dataset=self.dataset,
crop_size=self.crop_size,
resize=self.resize,
split_key="train",
crop_method="random",
sequence_mode=self.sequence_mode,
vocab=self.vocab,
text_seq_len=self.text_seq_len,
threshold=self.threshold,
)
self.cell_dataset_val = CellLoader(
data_csv=self.data_csv,
dataset=self.dataset,
crop_size=self.crop_size,
resize=self.resize,
crop_method="center",
split_key="val",
sequence_mode=self.sequence_mode,
vocab=self.vocab,
text_seq_len=self.text_seq_len,
threshold=self.threshold,
)
def prepare_data(self):
pass
def train_dataloader(self):
return DataLoader(
self.cell_dataset_train,
num_workers=self.num_workers,
shuffle=True,
batch_size=self.batch_size,
)
def val_dataloader(self):
return DataLoader(
self.cell_dataset_val,
num_workers=self.num_workers,
batch_size=self.batch_size,
)
# def test_dataloader(self):
# transforms = ...
# return DataLoader(self.test, batch_size=64)
class CELLE_trainer(pl.LightningModule):
def __init__(
self,
vqgan_model_path,
vqgan_config_path,
ckpt_path=None,
image_key="threshold",
condition_model_path=None,
condition_config_path=None,
num_images=2,
dim=2,
num_text_tokens=30,
text_seq_len=1000,
depth=16,
heads=16,
dim_head=64,
attn_dropout=0.1,
ff_dropout=0.1,
attn_types="full",
loss_img_weight=7,
stable=False,
rotary_emb=True,
text_embedding="bert",
fixed_embedding=True,
loss_cond_weight=1,
learning_rate=3e-4,
monitor="val_loss",
):
super().__init__()
vae = VQGanVAE(
vqgan_model_path=vqgan_model_path, vqgan_config_path=vqgan_config_path
)
self.image_key = image_key
if condition_config_path:
condition_vae = VQGanVAE(
vqgan_model_path=condition_model_path,
vqgan_config_path=condition_config_path,
)
else:
condition_vae = None
self.celle = CELLE(
dim=dim,
vae=vae, # automatically infer (1) image sequence length and (2) number of image tokens
condition_vae=condition_vae,
num_images=num_images,
num_text_tokens=num_text_tokens, # vocab size for text
text_seq_len=text_seq_len, # text sequence length
depth=depth, # should aim to be 64
heads=heads, # attention heads
dim_head=dim_head, # attention head dimension
attn_dropout=attn_dropout, # attention dropout
ff_dropout=ff_dropout, # feedforward dropout
loss_img_weight=loss_img_weight,
stable=stable,
rotary_emb=rotary_emb,
text_embedding=text_embedding,
fixed_embedding=fixed_embedding,
loss_cond_weight=loss_cond_weight,
)
self.learning_rate = learning_rate
self.num_text_tokens = num_text_tokens
self.num_images = num_images
if monitor is not None:
self.monitor = monitor
ignore_keys = []
if condition_model_path:
ignore_keys.append("celle.condition_vae")
if vqgan_model_path:
ignore_keys.append("celle.vae")
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
ckpt = sd.copy()
for k in sd.keys():
for ik in ignore_keys:
if k.startswith(ik):
# print("Deleting key {} from state_dict.".format(k))
del ckpt[k]
self.load_state_dict(ckpt, strict=True)
print(f"Restored from {path}")
def forward(self, text, condition, target, return_loss=True):
return self.celle(
text=text, condition=condition, image=target, return_loss=return_loss
)
def get_input(self, batch):
text = batch["sequence"].squeeze(1)
condition = batch["nucleus"]
target = batch[self.image_key]
return text, condition, target
def get_image_from_logits(self, logits, temperature=0.9):
filtered_logits = top_k(logits, thres=0.5)
sample = gumbel_sample(filtered_logits, temperature=temperature, dim=-1)
self.celle.vae.eval()
out = self.celle.vae.decode(
sample[:, self.celle.text_seq_len + self.celle.condition_seq_len :]
- (self.celle.num_text_tokens + self.celle.num_condition_tokens)
)
return out
def get_loss(self, text, condition, target):
loss_dict = {}
loss, loss_dict, logits = self(text, condition, target, return_loss=True)
return loss, loss_dict
def total_loss(
self,
loss,
loss_dict,
mode="train",
):
loss_dict = {f"{mode}/{key}": value for key, value in loss_dict.items()}
for key, value in loss_dict.items():
self.log(
key,
value,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True,
sync_dist=True,
)
return loss
def training_step(self, batch, batch_idx):
text, condition, target = self.get_input(batch)
loss, log_dict = self.get_loss(text, condition, target)
loss = self.total_loss(loss, log_dict, mode="train")
return loss
def validation_step(self, batch, batch_idx):
with torch.no_grad():
text, condition, target = self.get_input(batch)
loss, log_dict = self.get_loss(text, condition, target)
loss = self.total_loss(loss, log_dict, mode="val")
return loss
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=self.learning_rate, betas=(0.9, 0.95))
return optimizer
def scale_image(self, image):
for tensor in image:
if torch.min(tensor) < 0:
tensor += -torch.min(tensor)
else:
tensor -= torch.min(tensor)
tensor /= torch.max(tensor)
return image
@torch.no_grad()
def log_images(self, batch, **kwargs):
log = []
text, condition, target = self.get_input(batch)
text = text.squeeze(1).to(self.device)
condition = condition.to(self.device)
out = self.celle.generate_images(text=text, condition=condition)
log["condition"] = self.scale_image(condition)
log["output"] = self.scale_image(out)
if self.image_key == "threshold":
log["threshold"] = self.scale_image(target)
log["target"] = self.scale_image(batch["target"])
else:
log["target"] = self.scale_image(target)
return log
# from https://github.com/CompVis/taming-transformers/blob/master/celle_main.py
if __name__ == "__main__":
# custom parser to specify config files, train, test and debug mode,
# postfix, resume.
# `--key value` arguments are interpreted as arguments to the trainer.
# `nested.key=value` arguments are interpreted as config parameters.
# configs are merged from left-to-right followed by command line parameters.
# model:
# learning_rate: float
# target: path to lightning module
# params:
# key: value
# data:
# target: celle_main.DataModuleFromConfig
# params:
# batch_size: int
# wrap: bool
# train:
# target: path to train dataset
# params:
# key: value
# validation:
# target: path to validation dataset
# params:
# key: value
# test:
# target: path to test dataset
# params:
# key: value
# lightning: (optional, has sane defaults and can be specified on cmdline)
# trainer:
# additional arguments to trainer
# logger:
# logger to instantiate
# modelcheckpoint:
# modelcheckpoint to instantiate
# callbacks:
# callback1:
# target: importpath
# params:
# key: value
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# add cwd for convenience and to make classes in this file available when
# running as `python celle_main.py`
# (in particular `celle_main.DataModuleFromConfig`)
sys.path.append(os.getcwd())
parser = get_parser()
parser = Trainer.add_argparse_args(parser)
opt, unknown = parser.parse_known_args()
if opt.name and opt.resume:
raise ValueError(
"-n/--name and -r/--resume cannot be specified both."
"If you want to resume training in a new log folder, "
"use -n/--name in combination with --resume_from_checkpoint"
)
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
idx = len(paths) - paths[::-1].index("logs") + 1
logdir = "/".join(paths[:idx])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
opt.resume_from_checkpoint = ckpt
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
opt.base = base_configs + opt.base
_tmp = logdir.split("/")
nowname = _tmp[_tmp.index("logs") + 1]
else:
if opt.name:
name = "_" + opt.name
elif opt.base:
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
name = "_" + cfg_name
else:
name = ""
nowname = now + name + opt.postfix
logdir = os.path.join("logs", nowname)
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
seed_everything(opt.seed)
try:
# init and save configs
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
lightning_config = config.pop("lightning", OmegaConf.create())
# merge trainer cli with config
trainer_config = lightning_config.get("trainer", OmegaConf.create())
# default to ddp
# trainer_config["distributed_backend"] = "ddp"
for k in nondefault_trainer_args(opt):
trainer_config[k] = getattr(opt, k)
if not "gpus" in trainer_config:
del trainer_config["distributed_backend"]
cpu = True
else:
gpuinfo = trainer_config["gpus"]
print(f"Running on GPUs {gpuinfo}")
cpu = False
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
# model
# model = instantiate_from_config(config.model)
model = instantiate_from_config(config.model)
# trainer and callbacks
trainer_kwargs = dict()
# default logger configs
# NOTE wandb < 0.10.0 interferes with shutdown
# wandb >= 0.10.0 seems to fix it but still interferes with pudb
# debugging (wrongly sized pudb ui)
# thus prefer testtube for now
default_logger_cfgs = {
"wandb": {
"target": "pytorch_lightning.loggers.WandbLogger",
"params": {
"name": nowname,
"save_dir": logdir,
"offline": opt.debug,
"id": nowname,
},
},
"testtube": {
# "target": "pytorch_lightning.loggers.TestTubeLogger",
"target": "pytorch_lightning.loggers.TensorBoardLogger",
"params": {
"name": "testtube",
"save_dir": logdir,
},
},
}
default_logger_cfg = default_logger_cfgs["testtube"]
# logger_cfg = lightning_config.logger or OmegaConf.create()
try:
logger_cfg = lightning_config.logger
except:
logger_cfg = OmegaConf.create()
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
# specify which metric is used to determine best models
default_modelckpt_cfg = {
"checkpoint_callback": {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "{epoch:06}",
"verbose": True,
"save_last": True,
},
}
}
if hasattr(model, "monitor"):
print(f"Monitoring {model.monitor} as checkpoint metric.")
default_modelckpt_cfg["checkpoint_callback"]["params"][
"monitor"
] = model.monitor
default_modelckpt_cfg["checkpoint_callback"]["params"]["save_top_k"] = 3
try:
modelckpt_cfg = lightning_config.modelcheckpoint
except:
modelckpt_cfg = OmegaConf.create()
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
# trainer_kwargs["checkpoint_callback"] = instantiate_from_config(modelckpt_cfg)
# add callback which sets up log directory
default_callbacks_cfg = {
"setup_callback": {
"target": "celle_taming_main.SetupCallback",
"params": {
"resume": opt.resume,
"now": now,
"logdir": logdir,
"ckptdir": ckptdir,
"cfgdir": cfgdir,
"config": config,
"lightning_config": lightning_config,
},
},
# "image_logger": {
# "target": "celle_taming_main.ImageLogger",
# "params": {
# "batch_frequency": 0,
# "max_images": 0,
# "clamp": False,
# "increase_log_steps": False,
# },
# },
# "learning_rate_logger": {
# "target": "celle_taming_main.LearningRateMonitor",
# "params": {
# "logging_interval": "step",
# # "log_momentum": True
# },
# },
}
try:
callbacks_cfg = lightning_config.callbacks
except:
callbacks_cfg = OmegaConf.create()
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
callbacks_cfg = OmegaConf.merge(modelckpt_cfg, callbacks_cfg)
trainer_kwargs["callbacks"] = [
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
]
trainer = Trainer.from_argparse_args(
trainer_opt, **trainer_kwargs, profiler="simple"
)
# data
data = instantiate_from_config(config.data)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
# lightning still takes care of proper multiprocessing though
data.setup()
data.prepare_data()
# configure learning rate
bs, lr = config.data.params.batch_size, config.model.learning_rate
if not cpu:
ngpu = len(lightning_config.trainer.gpus.strip(",").split(","))
else:
ngpu = 1
try:
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
except:
accumulate_grad_batches = 1
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
model.learning_rate = accumulate_grad_batches * ngpu * bs * lr
print(
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (lr)".format(
model.learning_rate, accumulate_grad_batches, ngpu, bs, lr
)
)
# allow checkpointing via USR1
def melk(*args, **kwargs):
# run all checkpoint hooks
if trainer.global_rank == 0:
print("Summoning checkpoint.")
ckpt_path = os.path.join(ckptdir, "last.ckpt")
trainer.save_checkpoint(ckpt_path)
def divein(*args, **kwargs):
if trainer.global_rank == 0:
import pudb
pudb.set_trace()
import signal
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
# run
if opt.train:
try:
# model = torch.compile(model, mode="reduce_overhead")
torch.compile(trainer.fit(model, data), mode="max-autotune")
except Exception:
melk()
raise
if not opt.no_test and not trainer.interrupted:
trainer.test(model, data)
except Exception:
if opt.debug and trainer.global_rank == 0:
try:
import pudb as debugger
except ImportError:
import pdb as debugger
debugger.post_mortem()
raise
finally:
# move newly created debug project to debug_runs
if opt.debug and not opt.resume and trainer.global_rank == 0:
dst, name = os.path.split(logdir)
dst = os.path.join(dst, "debug_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
os.rename(logdir, dst)
|