File size: 8,106 Bytes
5d2263b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from rotary_embedding_torch import apply_rotary_emb
from celle.utils import exists, default, max_neg_value
# helpers
def stable_softmax(t, dim=-1, alpha=32**2):
t = t / alpha
t = t - torch.amax(t, dim=dim, keepdim=True).detach()
return (t * alpha).softmax(dim=dim)
def apply_pos_emb(pos_emb, qkv):
n = qkv[0].shape[-2]
pos_emb = pos_emb[..., :n, :]
return tuple(map(lambda t: apply_rotary_emb(pos_emb, t), qkv))
# classes
class Attention(nn.Module):
def __init__(
self,
dim,
seq_len,
causal=False,
heads=8,
dim_head=64,
dropout=0.0,
stable=False,
static_mask=None,
):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.seq_len = seq_len
self.scale = dim_head**-0.5
self.stable = stable
self.causal = causal
self.register_buffer("static_mask", static_mask, persistent=False)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
self.save_attn = nn.Identity()
def forward(self, x, context_mask=None, rotary_pos_emb=None):
# x: [batch_size, seq_len, dim]
b, n, _, h = *x.shape, self.heads
device = x.device
softmax = torch.softmax if not self.stable else stable_softmax
# qkv: 3 tensors of shape [batch_size, seq_len, inner_dim]
qkv = self.to_qkv(x).chunk(3, dim=-1)
# q,k,v: [batch_size, heads, seq_len, dim_head]
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), qkv)
if exists(rotary_pos_emb):
q, k, v = apply_pos_emb(rotary_pos_emb[..., :, :], (q, k, v))
q *= self.scale
# dots: [batch_size, heads, seq_len_i ,seq_len_j]
dots = torch.einsum("b h i d, b h j d -> b h i j", q, k)
mask_value = max_neg_value(dots)
if exists(context_mask):
# context_mask: [batch_size ,1 ,1 ,seq_len_j]
context_mask = rearrange(context_mask, "b j -> b 1 1 j")
context_mask = F.pad(context_mask, (1, 0), value=True)
mask_value = -torch.finfo(dots.dtype).max
dots = dots.masked_fill(~context_mask, mask_value)
if self.causal:
i, j = dots.shape[-2:]
context_mask = torch.ones(i, j, device=device).triu_(j - i + 1).bool()
dots.masked_fill_(context_mask, mask_value)
if exists(self.static_mask):
dots.masked_fill_(~self.static_mask[:n, :n], mask_value)
# attn: [batch_size ,heads ,seq_len_i ,seq_len_j]
attn = softmax(dots, dim=-1)
attn = self.save_attn(attn)
# out: [batch_size ,heads ,seq_len_i ,dim_head]
out = torch.einsum("b h n j, b h j d -> b h n d", attn, v)
# out: [batch_size ,seq_len_i ,(heads*dim_head)]
out = rearrange(out, "b h n d -> b n (h d)")
# out: [batch_size ,seq_len_i ,dim]
out = self.to_out(out)
return out
# sparse attention with convolutional pattern, as mentioned in the blog post. customizable kernel size and dilation
class SparseConvCausalAttention(nn.Module):
def __init__(
self,
dim,
seq_len,
image_size=32,
kernel_size=5,
dilation=1,
heads=8,
dim_head=64,
dropout=0.0,
stable=False,
**kwargs,
):
super().__init__()
assert kernel_size % 2 == 1, "kernel size must be odd"
inner_dim = dim_head * heads
self.seq_len = seq_len
self.heads = heads
self.scale = dim_head**-0.5
self.image_size = image_size
self.kernel_size = kernel_size
self.dilation = dilation
self.stable = stable
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
def forward(self, x, mask=None, rotary_pos_emb=None):
b, n, _, h, img_size, kernel_size, dilation, seq_len, device = (
*x.shape,
self.heads,
self.image_size,
self.kernel_size,
self.dilation,
self.seq_len,
x.device,
)
softmax = torch.softmax if not self.stable else stable_softmax
img_seq_len = img_size**2
text_len = seq_len + 1 - img_seq_len
# padding
padding = seq_len - n + 1
mask = default(mask, lambda: torch.ones(b, text_len, device=device).bool())
x = F.pad(x, (0, 0, 0, padding), value=0)
mask = mask[:, :text_len]
# derive query / keys / values
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), qkv)
if exists(rotary_pos_emb):
q, k, v = apply_pos_emb(rotary_pos_emb, (q, k, v))
q *= self.scale
((q_text, q_img), (k_text, k_img), (v_text, v_img)) = map(
lambda t: (t[:, :-img_seq_len], t[:, -img_seq_len:]), (q, k, v)
)
# text attention
dots_text = einsum("b i d, b j d -> b i j", q_text, k_text)
mask_value = max_neg_value(dots_text)
i, j = dots_text.shape[-2:]
text_causal_mask = torch.ones(i, j, device=device).triu_(j - i + 1).bool()
dots_text.masked_fill_(text_causal_mask, mask_value)
attn_text = softmax(dots_text, dim=-1)
out_text = einsum("b i j, b j d -> b i d", attn_text, v_text)
# image attention
effective_kernel_size = (kernel_size - 1) * dilation + 1
padding = effective_kernel_size // 2
k_img, v_img = map(
lambda t: rearrange(t, "b (h w) c -> b c h w", h=img_size), (k_img, v_img)
)
k_img, v_img = map(
lambda t: F.unfold(t, kernel_size, padding=padding, dilation=dilation),
(k_img, v_img),
)
k_img, v_img = map(
lambda t: rearrange(t, "b (d j) i -> b i j d", j=kernel_size**2),
(k_img, v_img),
)
# let image attend to all of text
dots_image = einsum("b i d, b i j d -> b i j", q_img, k_img)
dots_image_to_text = einsum("b i d, b j d -> b i j", q_img, k_text)
# calculate causal attention for local convolution
i, j = dots_image.shape[-2:]
img_seq = torch.arange(img_seq_len, device=device)
k_img_indices = rearrange(img_seq.float(), "(h w) -> () () h w", h=img_size)
k_img_indices = F.pad(
k_img_indices, (padding,) * 4, value=img_seq_len
) # padding set to be max, so it is never attended to
k_img_indices = F.unfold(k_img_indices, kernel_size, dilation=dilation)
k_img_indices = rearrange(k_img_indices, "b j i -> b i j")
# mask image attention
q_img_indices = rearrange(img_seq, "i -> () i ()")
causal_mask = q_img_indices < k_img_indices
# concat text mask with image causal mask
causal_mask = repeat(causal_mask, "() i j -> b i j", b=b * h)
mask = repeat(mask, "b j -> (b h) i j", i=i, h=h)
mask = torch.cat((~mask, causal_mask), dim=-1)
# image can attend to all of text
dots = torch.cat((dots_image_to_text, dots_image), dim=-1)
dots.masked_fill_(mask, mask_value)
attn = softmax(dots, dim=-1)
# aggregate
attn_image_to_text, attn_image = attn[..., :text_len], attn[..., text_len:]
out_image_to_image = einsum("b i j, b i j d -> b i d", attn_image, v_img)
out_image_to_text = einsum("b i j, b j d -> b i d", attn_image_to_text, v_text)
out_image = out_image_to_image + out_image_to_text
# combine attended values for both text and image
out = torch.cat((out_text, out_image), dim=1)
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
out = self.to_out(out)
return out[:, :n] |