File size: 5,228 Bytes
5d2263b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import torch
from math import pi
# Define helper functions
def exists(val):
"""Check if a variable exists"""
return val is not None
def uniq(arr):
return {el: True for el in arr}.keys()
def default(val, d):
"""If a value exists, return it; otherwise, return a default value"""
return val if exists(val) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def cast_tuple(val, depth=1):
if isinstance(val, list):
val = tuple(val)
return val if isinstance(val, tuple) else (val,) * depth
def is_empty(t):
"""Check if a tensor is empty"""
# Return True if the number of elements in the tensor is zero, else False
return t.nelement() == 0
def masked_mean(t, mask, dim=1):
"""
Compute the mean of a tensor, masked by a given mask
Args:
t (torch.Tensor): input tensor of shape (batch_size, seq_len, hidden_dim)
mask (torch.Tensor): mask tensor of shape (batch_size, seq_len)
dim (int): dimension along which to compute the mean (default=1)
Returns:
torch.Tensor: masked mean tensor of shape (batch_size, hidden_dim)
"""
t = t.masked_fill(~mask[:, :, None], 0.0)
return t.sum(dim=1) / mask.sum(dim=1)[..., None]
def set_requires_grad(model, value):
"""
Set whether or not the model's parameters require gradients
Args:
model (torch.nn.Module): the PyTorch model to modify
value (bool): whether or not to require gradients
"""
for param in model.parameters():
param.requires_grad = value
def eval_decorator(fn):
"""
Decorator function to evaluate a given function
Args:
fn (callable): function to evaluate
Returns:
callable: the decorated function
"""
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
def log(t, eps=1e-20):
"""
Compute the natural logarithm of a tensor
Args:
t (torch.Tensor): input tensor
eps (float): small value to add to prevent taking the log of 0 (default=1e-20)
Returns:
torch.Tensor: the natural logarithm of the input tensor
"""
return torch.log(t + eps)
def gumbel_noise(t):
"""
Generate Gumbel noise
Args:
t (torch.Tensor): input tensor
Returns:
torch.Tensor: a tensor of Gumbel noise with the same shape as the input tensor
"""
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature=0.9, dim=-1):
"""
Sample from a Gumbel-softmax distribution
Args:
t (torch.Tensor): input tensor of shape (batch_size, num_classes)
temperature (float): temperature for the Gumbel-softmax distribution (default=0.9)
dim (int): dimension along which to sample (default=-1)
Returns:
torch.Tensor: a tensor of samples from the Gumbel-softmax distribution with the same shape as the input tensor
"""
return (t / max(temperature, 1e-10)) + gumbel_noise(t)
def top_k(logits, thres=0.5):
"""
Return a tensor where all but the top k values are set to negative infinity
Args:
logits (torch.Tensor): input tensor of shape (batch_size, num_classes)
thres (float): threshold for the top k values (default=0.5)
Returns:
torch.Tensor: a tensor with the same shape as the input tensor, where all but the top k values are set to negative infinity
"""
num_logits = logits.shape[-1]
k = max(int((1 - thres) * num_logits), 1)
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float("-inf"))
probs.scatter_(-1, ind, val)
return probs
def gamma_func(mode="cosine", scale=0.15):
"""Return a function that takes a single input r and returns a value based on the selected mode"""
# Define a different function based on the selected mode
if mode == "linear":
return lambda r: 1 - r
elif mode == "cosine":
return lambda r: torch.cos(r * pi / 2)
elif mode == "square":
return lambda r: 1 - r**2
elif mode == "cubic":
return lambda r: 1 - r**3
elif mode == "scaled-cosine":
return lambda r: scale * (torch.cos(r * pi / 2))
else:
# Raise an error if the selected mode is not implemented
raise NotImplementedError
class always:
"""Helper class to always return a given value"""
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return self.val
class DivideMax(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
maxes = x.amax(dim=self.dim, keepdim=True).detach()
return x / maxes
def process_image(image_path):
image = Image.open(image_path)
transform = transforms.Compose([
transforms.RandomCrop(256),
transforms.ToTensor()
])
image_tensor = transform(image)
if image_tensor.shape[0] > 1:
image_tensor = torch.mean(image_tensor, dim=0, keepdim=True)
return image_tensor.unsqueeze(0)
|