File size: 15,273 Bytes
5d2263b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import os, math
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
from main import instantiate_from_config
from taming.modules.util import SOSProvider
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class Net2NetTransformer(pl.LightningModule):
def __init__(self,
transformer_config,
first_stage_config,
cond_stage_config,
permuter_config=None,
ckpt_path=None,
ignore_keys=[],
first_stage_key="image",
cond_stage_key="depth",
downsample_cond_size=-1,
pkeep=1.0,
sos_token=0,
unconditional=False,
):
super().__init__()
self.be_unconditional = unconditional
self.sos_token = sos_token
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
self.init_first_stage_from_ckpt(first_stage_config)
self.init_cond_stage_from_ckpt(cond_stage_config)
if permuter_config is None:
permuter_config = {"target": "taming.modules.transformer.permuter.Identity"}
self.permuter = instantiate_from_config(config=permuter_config)
self.transformer = instantiate_from_config(config=transformer_config)
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.downsample_cond_size = downsample_cond_size
self.pkeep = pkeep
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
for k in sd.keys():
for ik in ignore_keys:
if k.startswith(ik):
self.print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=False)
print(f"Restored from {path}")
def init_first_stage_from_ckpt(self, config):
model = instantiate_from_config(config)
model = model.eval()
model.train = disabled_train
self.first_stage_model = model
def init_cond_stage_from_ckpt(self, config):
if config == "__is_first_stage__":
print("Using first stage also as cond stage.")
self.cond_stage_model = self.first_stage_model
elif config == "__is_unconditional__" or self.be_unconditional:
print(f"Using no cond stage. Assuming the training is intended to be unconditional. "
f"Prepending {self.sos_token} as a sos token.")
self.be_unconditional = True
self.cond_stage_key = self.first_stage_key
self.cond_stage_model = SOSProvider(self.sos_token)
else:
model = instantiate_from_config(config)
model = model.eval()
model.train = disabled_train
self.cond_stage_model = model
def forward(self, x, c):
# one step to produce the logits
# x = target
# c = nucleus
_, z_indices = self.encode_to_z(x)
_, c_indices = self.encode_to_c(c)
if self.training and self.pkeep < 1.0:
mask = torch.bernoulli(self.pkeep*torch.ones(z_indices.shape,
device=z_indices.device))
mask = mask.round().to(dtype=torch.int64)
r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size)
a_indices = mask*z_indices+(1-mask)*r_indices
else:
a_indices = z_indices
cz_indices = torch.cat((c_indices, a_indices), dim=1)
# target includes all sequence elements (no need to handle first one
# differently because we are conditioning)
target = z_indices
# make the prediction
logits, _ = self.transformer(cz_indices[:, :-1])
# cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c)
logits = logits[:, c_indices.shape[1]-1:]
return logits, target
def top_k_logits(self, logits, k):
v, ix = torch.topk(logits, k)
out = logits.clone()
out[out < v[..., [-1]]] = -float('Inf')
return out
@torch.no_grad()
def sample(self, x, c, steps, temperature=1.0, sample=False, top_k=None,
callback=lambda k: None):
x = torch.cat((c,x),dim=1)
block_size = self.transformer.get_block_size()
assert not self.transformer.training
if self.pkeep <= 0.0:
# one pass suffices since input is pure noise anyway
assert len(x.shape)==2
noise_shape = (x.shape[0], steps-1)
#noise = torch.randint(self.transformer.config.vocab_size, noise_shape).to(x)
noise = c.clone()[:,x.shape[1]-c.shape[1]:-1]
x = torch.cat((x,noise),dim=1)
logits, _ = self.transformer(x)
# take all logits for now and scale by temp
logits = logits / temperature
# optionally crop probabilities to only the top k options
if top_k is not None:
logits = self.top_k_logits(logits, top_k)
# apply softmax to convert to probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution or take the most likely
if sample:
shape = probs.shape
probs = probs.reshape(shape[0]*shape[1],shape[2])
ix = torch.multinomial(probs, num_samples=1)
probs = probs.reshape(shape[0],shape[1],shape[2])
ix = ix.reshape(shape[0],shape[1])
else:
_, ix = torch.topk(probs, k=1, dim=-1)
# cut off conditioning
x = ix[:, c.shape[1]-1:]
else:
for k in range(steps):
callback(k)
assert x.size(1) <= block_size # make sure model can see conditioning
x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed
logits, _ = self.transformer(x_cond)
# pluck the logits at the final step and scale by temperature
logits = logits[:, -1, :] / temperature
# optionally crop probabilities to only the top k options
if top_k is not None:
logits = self.top_k_logits(logits, top_k)
# apply softmax to convert to probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution or take the most likely
if sample:
ix = torch.multinomial(probs, num_samples=1)
else:
_, ix = torch.topk(probs, k=1, dim=-1)
# append to the sequence and continue
x = torch.cat((x, ix), dim=1)
# cut off conditioning
x = x[:, c.shape[1]:]
return x
@torch.no_grad()
def encode_to_z(self, x):
quant_z, _, info = self.first_stage_model.encode(x)
indices = info[2].view(quant_z.shape[0], -1)
indices = self.permuter(indices)
return quant_z, indices
@torch.no_grad()
def encode_to_c(self, c):
if self.downsample_cond_size > -1:
c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size))
#quant_c, _, info = self.cond_stage_model.encode(x)
#indices = info[2].view(quant_c.shape[0], -1)
#indices = self.permuter(indices)
quant_c, _, [_,_,indices] = self.cond_stage_model.encode(c)
if len(indices.shape) != 2:
indices = indices.view(c.shape[0], -1)
return quant_c, indices
@torch.no_grad()
def decode_to_img(self, index, zshape):
index = self.permuter(index, reverse=True)
bhwc = (zshape[0],zshape[2],zshape[3],zshape[1])
quant_z = self.first_stage_model.quantize.get_codebook_entry(
index.reshape(-1), shape=bhwc)
x = self.first_stage_model.decode(quant_z)
return x
@torch.no_grad()
def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs):
log = dict()
N = 4
if lr_interface:
x, c = self.get_xc(batch, N, diffuse=False, upsample_factor=8)
else:
x, c = self.get_xc(batch, N)
x = x.to(device=self.device)
c = c.to(device=self.device)
quant_z, z_indices = self.encode_to_z(x)
quant_c, c_indices = self.encode_to_c(c)
# create a "half"" sample
z_start_indices = z_indices[:,:z_indices.shape[1]//2]
index_sample = self.sample(z_start_indices, c_indices,
steps=z_indices.shape[1]-z_start_indices.shape[1],
temperature=temperature if temperature is not None else 1.0,
sample=True,
top_k=top_k if top_k is not None else 100,
callback=callback if callback is not None else lambda k: None)
x_sample = self.decode_to_img(index_sample, quant_z.shape)
# sample
z_start_indices = z_indices[:, :0]
index_sample = self.sample(z_start_indices, c_indices,
steps=z_indices.shape[1],
temperature=temperature if temperature is not None else 1.0,
sample=True,
top_k=top_k if top_k is not None else 100,
callback=callback if callback is not None else lambda k: None)
x_sample_nopix = self.decode_to_img(index_sample, quant_z.shape)
# det sample
z_start_indices = z_indices[:, :0]
index_sample = self.sample(z_start_indices, c_indices,
steps=z_indices.shape[1],
sample=False,
callback=callback if callback is not None else lambda k: None)
x_sample_det = self.decode_to_img(index_sample, quant_z.shape)
# reconstruction
x_rec = self.decode_to_img(z_indices, quant_z.shape)
log["inputs"] = x
log["reconstructions"] = x_rec
if self.cond_stage_key != "image" or self.cond_stage_key != "nucleus" or self.cond_stage_key != "target":
cond_rec = self.cond_stage_model.decode(quant_c)
if self.cond_stage_key == "segmentation":
# get image from segmentation mask
num_classes = cond_rec.shape[1]
c = torch.argmax(c, dim=1, keepdim=True)
c = F.one_hot(c, num_classes=num_classes)
c = c.squeeze(1).permute(0, 3, 1, 2).float()
c = self.cond_stage_model.to_rgb(c)
cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True)
cond_rec = F.one_hot(cond_rec, num_classes=num_classes)
cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float()
cond_rec = self.cond_stage_model.to_rgb(cond_rec)
log["conditioning_rec"] = cond_rec
log["conditioning"] = c
log["samples_half"] = x_sample
log["samples_nopix"] = x_sample_nopix
log["samples_det"] = x_sample_det
return log
def get_input(self, key, batch):
x = batch[key]
if len(x.shape) == 3:
x = x[..., None]
#if len(x.shape) == 4:
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
if x.dtype == torch.double:
x = x.float()
return x
def get_xc(self, batch, N=None):
x = self.get_input(self.first_stage_key, batch)
c = self.get_input(self.cond_stage_key, batch)
if N is not None:
x = x[:N]
c = c[:N]
return x, c
def shared_step(self, batch):
x, c = self.get_xc(batch)
logits, target = self(x, c)
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1))
return loss
def training_step(self, batch, batch_idx):
loss = self.shared_step(batch)
self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
return loss
def validation_step(self, batch, batch_idx):
loss = self.shared_step(batch)
self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
return loss
def configure_optimizers(self):
"""
Following minGPT:
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
We are then returning the PyTorch optimizer object.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear, )
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.transformer.named_modules():
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
if pn.endswith('bias'):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# special case the position embedding parameter in the root GPT module as not decayed
no_decay.add('pos_emb')
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.transformer.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
% (str(param_dict.keys() - union_params), )
# create the pytorch optimizer object
optim_groups = [
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01},
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
]
optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95))
return optimizer
|