|
import os |
|
import numpy as np |
|
from PIL import Image, ImageSequence |
|
import json |
|
import pandas as pd |
|
|
|
import torch |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
import torchvision.transforms.functional as TF |
|
|
|
<<<<<<< HEAD |
|
from celle.utils import replace_outliers |
|
======= |
|
>>>>>>> 5d2263b456a117f5f8e81f9c45af75748d5a2c3d |
|
|
|
def simple_conversion(seq): |
|
"""Create 26-dim embedding""" |
|
chars = [ |
|
"-", |
|
"M", |
|
"R", |
|
"H", |
|
"K", |
|
"D", |
|
"E", |
|
"S", |
|
"T", |
|
"N", |
|
"Q", |
|
"C", |
|
"U", |
|
"G", |
|
"P", |
|
"A", |
|
"V", |
|
"I", |
|
"F", |
|
"Y", |
|
"W", |
|
"L", |
|
"O", |
|
"X", |
|
"Z", |
|
"B", |
|
"J", |
|
] |
|
|
|
nums = range(len(chars)) |
|
|
|
seqs_x = np.zeros(len(seq)) |
|
|
|
for idx, char in enumerate(seq): |
|
|
|
lui = chars.index(char) |
|
|
|
seqs_x[idx] = nums[lui] |
|
|
|
return torch.tensor([seqs_x]).long() |
|
|
|
|
|
<<<<<<< HEAD |
|
======= |
|
def replace_outliers(image, percentile=0.0001): |
|
|
|
lower_bound, upper_bound = torch.quantile(image, percentile), torch.quantile( |
|
image, 1 - percentile |
|
) |
|
mask = (image <= upper_bound) & (image >= lower_bound) |
|
|
|
valid_pixels = image[mask] |
|
|
|
image[~mask] = torch.clip(image[~mask], min(valid_pixels), max(valid_pixels)) |
|
|
|
return image |
|
|
|
|
|
>>>>>>> 5d2263b456a117f5f8e81f9c45af75748d5a2c3d |
|
class CellLoader(Dataset): |
|
"""imports mined opencell images with protein sequence""" |
|
|
|
def __init__( |
|
self, |
|
data_csv=None, |
|
dataset=None, |
|
split_key=None, |
|
resize=600, |
|
crop_size=600, |
|
crop_method="random", |
|
sequence_mode="simple", |
|
vocab="bert", |
|
threshold="median", |
|
text_seq_len=0, |
|
pad_mode="random", |
|
): |
|
self.data_csv = data_csv |
|
self.dataset = dataset |
|
self.image_folders = [] |
|
self.crop_method = crop_method |
|
self.resize = resize |
|
self.crop_size = crop_size |
|
self.sequence_mode = sequence_mode |
|
self.threshold = threshold |
|
self.text_seq_len = int(text_seq_len) |
|
self.vocab = vocab |
|
self.pad_mode = pad_mode |
|
|
|
if self.sequence_mode == "embedding" or self.sequence_mode == "onehot": |
|
|
|
|
|
if self.vocab == "esm1b" or self.vocab == "esm2": |
|
from esm import Alphabet |
|
|
|
self.tokenizer = Alphabet.from_architecture( |
|
"ESM-1b" |
|
).get_batch_converter() |
|
self.text_seq_len += 2 |
|
|
|
if data_csv: |
|
|
|
data = pd.read_csv(data_csv) |
|
|
|
self.parent_path = os.path.dirname(data_csv).split(data_csv)[0] |
|
|
|
if split_key == "train": |
|
self.data = data[data["split"] == "train"] |
|
elif split_key == "val": |
|
self.data = data[data["split"] == "val"] |
|
else: |
|
self.data = data |
|
|
|
self.data = self.data.reset_index(drop=True) |
|
|
|
|
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__( |
|
self, |
|
idx, |
|
get_sequence=True, |
|
get_images=True, |
|
): |
|
if get_sequence and self.text_seq_len > 0: |
|
|
|
protein_vector = self.get_protein_vector(idx) |
|
|
|
else: |
|
protein_vector = torch.zeros((1, 1)) |
|
|
|
if get_images: |
|
|
|
nucleus, target, threshold = self.get_images(idx, self.dataset) |
|
else: |
|
nucleus, target, threshold = torch.zeros((3, 1)) |
|
|
|
data_dict = { |
|
"nucleus": nucleus.float(), |
|
"target": target.float(), |
|
"threshold": threshold.float(), |
|
"sequence": protein_vector.long(), |
|
} |
|
|
|
return data_dict |
|
|
|
def get_protein_vector(self, idx): |
|
|
|
if "protein_sequence" not in self.data.columns: |
|
|
|
metadata = self.retrieve_metadata(idx) |
|
protein_sequence = metadata["sequence"] |
|
else: |
|
protein_sequence = self.data.iloc[idx]["protein_sequence"] |
|
|
|
protein_vector = self.tokenize_sequence(protein_sequence) |
|
|
|
return protein_vector |
|
|
|
def get_images(self, idx, dataset): |
|
|
|
if dataset == "HPA": |
|
|
|
nucleus = Image.open( |
|
os.path.join( |
|
self.parent_path, self.data.iloc[idx]["nucleus_image_path"] |
|
) |
|
) |
|
|
|
target = Image.open( |
|
os.path.join(self.parent_path, self.data.iloc[idx]["target_image_path"]) |
|
) |
|
|
|
nucleus = TF.to_tensor(nucleus)[0] |
|
target = TF.to_tensor(target)[0] |
|
|
|
image = torch.stack([nucleus, target], axis=0) |
|
|
|
normalize = (0.0655, 0.0650), (0.1732, 0.1208) |
|
|
|
elif dataset == "OpenCell": |
|
image = Image.open( |
|
os.path.join(self.parent_path, self.data.iloc[idx]["image_path"]) |
|
) |
|
nucleus, target = [page.copy() for page in ImageSequence.Iterator(image)] |
|
|
|
nucleus = replace_outliers(torch.divide(TF.to_tensor(nucleus), 65536))[0] |
|
target = replace_outliers(torch.divide(TF.to_tensor(target), 65536))[0] |
|
|
|
image = torch.stack([nucleus, target], axis=0) |
|
|
|
normalize = ( |
|
(0.0272, 0.0244), |
|
(0.0486, 0.0671), |
|
) |
|
|
|
|
|
|
|
t_forms = [transforms.Resize(self.resize, antialias=None)] |
|
|
|
if self.crop_method == "random": |
|
|
|
t_forms.append(transforms.RandomCrop(self.crop_size)) |
|
t_forms.append(transforms.RandomHorizontalFlip(p=0.5)) |
|
t_forms.append(transforms.RandomVerticalFlip(p=0.5)) |
|
|
|
elif self.crop_method == "center": |
|
|
|
t_forms.append(transforms.CenterCrop(self.crop_size)) |
|
|
|
t_forms.append(transforms.Normalize(normalize[0], normalize[1])) |
|
|
|
image = transforms.Compose(t_forms)(image) |
|
|
|
nucleus, target = image |
|
|
|
nucleus /= torch.abs(nucleus).max() |
|
target -= target.min() |
|
target /= target.max() |
|
|
|
nucleus = nucleus.unsqueeze(0) |
|
target = target.unsqueeze(0) |
|
|
|
threshold = target |
|
|
|
if self.threshold == "mean": |
|
|
|
threshold = 1.0 * (threshold > (torch.mean(threshold))) |
|
|
|
elif self.threshold == "median": |
|
|
|
threshold = 1.0 * (threshold > (torch.median(threshold))) |
|
|
|
elif self.threshold == "1090_IQR": |
|
|
|
p10 = torch.quantile(threshold, 0.1, None) |
|
p90 = torch.quantile(threshold, 0.9, None) |
|
threshold = torch.clip(threshold, p10, p90) |
|
|
|
nucleus = torch.nan_to_num(nucleus, 0.0, 1.0, 0.0) |
|
target = torch.nan_to_num(target, 0.0, 1.0, 0.0) |
|
threshold = torch.nan_to_num(threshold, 0.0, 1.0, 0.0) |
|
|
|
return nucleus, target, threshold |
|
|
|
def retrieve_metadata(self, idx): |
|
with open( |
|
os.path.join(self.parent_path, self.data.iloc[idx]["metadata_path"]) |
|
) as f: |
|
metadata = json.load(f) |
|
|
|
return metadata |
|
|
|
def tokenize_sequence(self, protein_sequence): |
|
|
|
pad_token = 0 |
|
|
|
if self.sequence_mode == "simple": |
|
protein_vector = simple_conversion(protein_sequence) |
|
|
|
elif self.sequence_mode == "center": |
|
protein_sequence = protein_sequence.center(self.text_seq_length, "-") |
|
protein_vector = simple_conversion(protein_sequence) |
|
|
|
elif self.sequence_mode == "alternating": |
|
protein_sequence = protein_sequence.center(self.text_seq_length, "-") |
|
protein_sequence = protein_sequence[::18] |
|
protein_sequence = protein_sequence.center( |
|
int(self.text_seq_length / 18) + 1, "-" |
|
) |
|
protein_vector = simple_conversion(protein_sequence) |
|
|
|
|
|
elif self.sequence_mode == "embedding": |
|
|
|
if self.vocab == "esm1b" or self.vocab == "esm2": |
|
pad_token = 1 |
|
protein_vector = self.tokenizer([("", protein_sequence)])[-1] |
|
|
|
if protein_vector.shape[-1] < self.text_seq_len: |
|
|
|
diff = self.text_seq_len - protein_vector.shape[-1] |
|
|
|
if self.pad_mode == "end": |
|
protein_vector = torch.nn.functional.pad( |
|
protein_vector, (0, diff), "constant", pad_token |
|
) |
|
elif self.pad_mode == "random": |
|
split = diff - np.random.randint(0, diff + 1) |
|
|
|
protein_vector = torch.cat( |
|
[torch.ones(1, split) * 0, protein_vector], dim=1 |
|
) |
|
|
|
protein_vector = torch.nn.functional.pad( |
|
protein_vector, (0, diff - split), "constant", pad_token |
|
) |
|
|
|
elif protein_vector.shape[-1] > self.text_seq_len: |
|
start_int = np.random.randint( |
|
0, protein_vector.shape[-1] - self.text_seq_len |
|
) |
|
|
|
protein_vector = protein_vector[ |
|
:, start_int : start_int + self.text_seq_len |
|
] |
|
|
|
return protein_vector.long() |
|
|