Emaad's picture
Update app.py
b75e844
raw
history blame
6.17 kB
import os
import gradio as gr
from prediction import run_image_prediction
import torch
import torchvision.transforms as T
from celle.utils import process_image
from PIL import Image
from matplotlib import pyplot as plt
from celle_main import instantiate_from_config
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
class model:
def __init__(self):
self.model = None
self.model_name = None
def gradio_demo(self, model_name, sequence_input, nucleus_image, protein_image):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if self.model_name != model_name:
self.model_name = model_name
model_ckpt_path = hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="model.ckpt")
model_config_path = hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="config.yaml")
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="nucleus_vqgan.yaml")
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="threshold_vqgan.yaml")
# Load model config and set ckpt_path if not provided in config
config = OmegaConf.load(model_config_path)
if config["model"]["params"]["ckpt_path"] is None:
config["model"]["params"]["ckpt_path"] = model_ckpt_path
# Set condition_model_path and vqgan_model_path to None
config["model"]["params"]["condition_model_path"] = None
config["model"]["params"]["vqgan_model_path"] = None
base_path = os.getcwd()
os.chdir(os.path.dirname(model_ckpt_path))
# Instantiate model from config and move to device
self.model = instantiate_from_config(config.model).to(device)
self.model = torch.compile(self.model,mode='max-autotune')
os.chdir(base_path)
if "Finetuned" in model_name:
dataset = "OpenCell"
else:
dataset = "HPA"
to_tensor = T.ToTensor()
nucleus_tensor = to_tensor(nucleus_image)
if protein_image:
protein_tensor = to_tensor(protein_image)
stacked_images = torch.stack([nucleus_tensor, protein_tensor], dim=0)
processed_images = process_image(stacked_images, dataset)
nucleus_image = processed_images[0].unsqueeze(0)
protein_image = processed_images[1].unsqueeze(0)
protein_image = protein_image > 0
protein_image = 1.0 * protein_image
else:
protein_image = torch.ones((256, 256))
threshold, heatmap = run_image_prediction(
sequence_input=sequence_input,
nucleus_image=nucleus_image,
model=self.model,
device=device,
)
# Plot the heatmap
plt.imshow(heatmap.cpu(), cmap="rainbow", interpolation="bicubic")
plt.axis("off")
# Save the plot to a temporary file
plt.savefig("temp.png", bbox_inches="tight", dpi=256)
# Open the temporary file as a PIL image
heatmap = Image.open("temp.png")
return (
T.ToPILImage()(nucleus_image[0, 0]),
T.ToPILImage()(protein_image),
T.ToPILImage()(threshold),
heatmap,
)
base_class = model()
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown("## Inputs")
gr.Markdown("Select the prediction model. **Note the first run may take ~1-2 minutes, but will take 2-3 seconds afterwards.**")
gr.Markdown(
"```CELL-E_2_HPA_480``` is a good general purpose model for various cell types using ICC-IF."
)
gr.Markdown(
"```CELL-E_2_HPA_Finetuned_480``` is finetuned on OpenCell and is good more live-cell predictions on HEK cells."
)
with gr.Row():
model_name = gr.Dropdown(
["CELL-E_2_HPA_480", "CELL-E_2_HPA_Finetuned_480"],
value="CELL-E_2_HPA_480",
label="Model Name",
)
with gr.Row():
gr.Markdown(
"Input the desired amino acid sequence. GFP is shown below by default."
)
with gr.Row():
sequence_input = gr.Textbox(
value="MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK",
label="Sequence",
)
with gr.Row():
gr.Markdown(
"Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger. We provide default images in [images](https://huggingface.co/spaces/HuangLab/CELL-E_2/tree/main/images)"
)
gr.Markdown("The protein image is optional and is just used for display.")
with gr.Row().style(equal_height=True):
nucleus_image = gr.Image(
type="pil",
label="Nucleus Image",
image_mode="L",
)
protein_image = gr.Image(type="pil", label="Protein Image (Optional)")
with gr.Row():
gr.Markdown("## Outputs")
with gr.Row():
gr.Markdown("Image predictions are show below.")
with gr.Row().style(equal_height=True):
nucleus_image_crop = gr.Image(type="pil", label="Nucleus Image", image_mode="L")
protein_threshold_image = gr.Image(
type="pil", label="Protein Threshold Image", image_mode="L"
)
predicted_threshold_image = gr.Image(
type="pil", label="Predicted Threshold image", image_mode="L"
)
predicted_heatmap = gr.Image(type="pil", label="Predicted Heatmap")
with gr.Row():
button = gr.Button("Run Model")
inputs = [model_name, sequence_input, nucleus_image, protein_image]
outputs = [
nucleus_image_crop,
protein_threshold_image,
predicted_threshold_image,
predicted_heatmap,
]
button.click(base_class.gradio_demo, inputs, outputs)
demo.launch(enable_queue=True)