EmaadKhwaja
file upload
5d2263b
raw
history blame
6.53 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from taming.modules.losses.lpips import LPIPS
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
class DummyLoss(nn.Module):
def __init__(self):
super().__init__()
def adopt_weight(weight, global_step, threshold=0, value=0.0):
if global_step < threshold:
weight = value
return weight
def hinge_d_loss(logits_real, logits_fake):
loss_real = torch.mean(F.relu(1.0 - logits_real))
loss_fake = torch.mean(F.relu(1.0 + logits_fake))
d_loss = 0.5 * (loss_real + loss_fake)
return d_loss
def vanilla_d_loss(logits_real, logits_fake):
d_loss = 0.5 * (
torch.mean(torch.nn.functional.softplus(-logits_real))
+ torch.mean(torch.nn.functional.softplus(logits_fake))
)
return d_loss
class VQLPIPSWithDiscriminator(nn.Module):
def __init__(
self,
disc_start,
codebook_weight=1.0,
pixelloss_weight=1.0,
disc_num_layers=3,
disc_in_channels=3,
disc_factor=1.0,
disc_weight=1.0,
perceptual_weight=1.0,
use_actnorm=False,
disc_conditional=False,
disc_ndf=64,
disc_loss="hinge",
):
super().__init__()
assert disc_loss in ["hinge", "vanilla"]
self.codebook_weight = codebook_weight
self.pixel_weight = pixelloss_weight
self.perceptual_loss = LPIPS().eval()
self.perceptual_weight = perceptual_weight
self.discriminator = NLayerDiscriminator(
input_nc=disc_in_channels,
n_layers=disc_num_layers,
use_actnorm=use_actnorm,
ndf=disc_ndf,
).apply(weights_init)
self.discriminator_iter_start = disc_start
if disc_loss == "hinge":
self.disc_loss = hinge_d_loss
elif disc_loss == "vanilla":
self.disc_loss = vanilla_d_loss
else:
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
self.disc_factor = disc_factor
self.discriminator_weight = disc_weight
self.disc_conditional = disc_conditional
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
if last_layer is not None:
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
else:
nll_grads = torch.autograd.grad(
nll_loss, self.last_layer[0], retain_graph=True
)[0]
g_grads = torch.autograd.grad(
g_loss, self.last_layer[0], retain_graph=True
)[0]
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
d_weight = d_weight * self.discriminator_weight
return d_weight
def forward(
self,
codebook_loss,
inputs,
reconstructions,
optimizer_idx,
global_step,
last_layer=None,
cond=None,
split="train",
):
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
if self.perceptual_weight > 0:
p_loss = self.perceptual_loss(
inputs.contiguous(), reconstructions.contiguous()
)
rec_loss = rec_loss + self.perceptual_weight * p_loss
else:
p_loss = torch.tensor([0.0])
nll_loss = rec_loss
# nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
nll_loss = torch.mean(nll_loss)
# now the GAN part
if optimizer_idx == 0:
# generator update
if cond is None:
assert not self.disc_conditional
logits_fake = self.discriminator(reconstructions.contiguous())
else:
assert self.disc_conditional
logits_fake = self.discriminator(
torch.cat((reconstructions.contiguous(), cond), dim=1)
)
g_loss = -torch.mean(logits_fake)
try:
d_weight = self.calculate_adaptive_weight(
nll_loss, g_loss, last_layer=last_layer
)
except RuntimeError:
assert not self.training
d_weight = torch.tensor(0.0)
disc_factor = adopt_weight(
self.disc_factor, global_step, threshold=self.discriminator_iter_start
)
loss = (
nll_loss
+ d_weight * disc_factor * g_loss
+ self.codebook_weight * codebook_loss.mean()
)
log = {
"{}/total_loss".format(split): loss.clone().detach().mean(),
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
"{}/nll_loss".format(split): nll_loss.detach().mean(),
"{}/rec_loss".format(split): rec_loss.detach().mean(),
"{}/p_loss".format(split): p_loss.detach().mean(),
"{}/d_weight".format(split): d_weight.detach(),
"{}/disc_factor".format(split): torch.tensor(disc_factor),
"{}/g_loss".format(split): g_loss.detach().mean(),
}
return loss, log
if optimizer_idx == 1:
# second pass for discriminator update
if cond is None:
logits_real = self.discriminator(inputs.contiguous().detach())
logits_fake = self.discriminator(reconstructions.contiguous().detach())
else:
logits_real = self.discriminator(
torch.cat((inputs.contiguous().detach(), cond), dim=1)
)
logits_fake = self.discriminator(
torch.cat((reconstructions.contiguous().detach(), cond), dim=1)
)
disc_factor = adopt_weight(
self.disc_factor, global_step, threshold=self.discriminator_iter_start
)
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
log = {
"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
"{}/logits_real".format(split): logits_real.detach().mean(),
"{}/logits_fake".format(split): logits_fake.detach().mean(),
}
return d_loss, log