|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from torch import einsum |
|
from einops import rearrange |
|
|
|
|
|
class VectorQuantizer(nn.Module): |
|
""" |
|
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py |
|
____________________________________________ |
|
Discretization bottleneck part of the VQ-VAE. |
|
Inputs: |
|
- n_e : number of embeddings |
|
- e_dim : dimension of embedding |
|
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 |
|
_____________________________________________ |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, n_e, e_dim, beta): |
|
super(VectorQuantizer, self).__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
def forward(self, z): |
|
""" |
|
Inputs the output of the encoder network z and maps it to a discrete |
|
one-hot vector that is the index of the closest embedding vector e_j |
|
z (continuous) -> z_q (discrete) |
|
z.shape = (batch, channel, height, width) |
|
quantization pipeline: |
|
1. get encoder input (B,C,H,W) |
|
2. flatten input to (B*H*W,C) |
|
""" |
|
|
|
z = z.permute(0, 2, 3, 1).contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight**2, dim=1) - 2 * \ |
|
torch.matmul(z_flattened, self.embedding.weight.t()) |
|
|
|
|
|
|
|
|
|
min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) |
|
|
|
min_encodings = torch.zeros( |
|
min_encoding_indices.shape[0], self.n_e).to(z) |
|
min_encodings.scatter_(1, min_encoding_indices, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
e_mean = torch.mean(min_encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
|
|
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) |
|
min_encodings.scatter_(1, indices[:,None], 1) |
|
|
|
|
|
z_q = torch.matmul(min_encodings.float(), self.embedding.weight) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
class GumbelQuantize(nn.Module): |
|
""" |
|
credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!) |
|
Gumbel Softmax trick quantizer |
|
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016 |
|
https://arxiv.org/abs/1611.01144 |
|
""" |
|
def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True, |
|
kl_weight=5e-4, temp_init=1.0, use_vqinterface=True, |
|
remap=None, unknown_index="random"): |
|
super().__init__() |
|
|
|
self.embedding_dim = embedding_dim |
|
self.n_embed = n_embed |
|
|
|
self.straight_through = straight_through |
|
self.temperature = temp_init |
|
self.kl_weight = kl_weight |
|
|
|
self.proj = nn.Conv2d(num_hiddens, n_embed, 1) |
|
self.embed = nn.Embedding(n_embed, embedding_dim) |
|
|
|
self.use_vqinterface = use_vqinterface |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed+1 |
|
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices.") |
|
else: |
|
self.re_embed = n_embed |
|
|
|
def remap_to_used(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape)>1 |
|
inds = inds.reshape(ishape[0],-1) |
|
used = self.used.to(inds) |
|
match = (inds[:,:,None]==used[None,None,...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2)<1 |
|
if self.unknown_index == "random": |
|
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape)>1 |
|
inds = inds.reshape(ishape[0],-1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds>=self.used.shape[0]] = 0 |
|
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, z, temp=None, return_logits=False): |
|
|
|
hard = self.straight_through if self.training else True |
|
temp = self.temperature if temp is None else temp |
|
|
|
logits = self.proj(z) |
|
if self.remap is not None: |
|
|
|
full_zeros = torch.zeros_like(logits) |
|
logits = logits[:,self.used,...] |
|
|
|
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard) |
|
if self.remap is not None: |
|
|
|
full_zeros[:,self.used,...] = soft_one_hot |
|
soft_one_hot = full_zeros |
|
z_q = einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight) |
|
|
|
|
|
qy = F.softmax(logits, dim=1) |
|
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean() |
|
|
|
ind = soft_one_hot.argmax(dim=1) |
|
if self.remap is not None: |
|
ind = self.remap_to_used(ind) |
|
if self.use_vqinterface: |
|
if return_logits: |
|
return z_q, diff, (None, None, ind), logits |
|
return z_q, diff, (None, None, ind) |
|
return z_q, diff, ind |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
b, h, w, c = shape |
|
assert b*h*w == indices.shape[0] |
|
indices = rearrange(indices, '(b h w) -> b h w', b=b, h=h, w=w) |
|
if self.remap is not None: |
|
indices = self.unmap_to_all(indices) |
|
one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float() |
|
z_q = einsum('b n h w, n d -> b d h w', one_hot, self.embed.weight) |
|
return z_q |
|
|
|
|
|
class VectorQuantizer2(nn.Module): |
|
""" |
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly |
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices. |
|
""" |
|
|
|
|
|
|
|
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", |
|
sane_index_shape=False, legacy=True): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.legacy = legacy |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed+1 |
|
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices.") |
|
else: |
|
self.re_embed = n_e |
|
|
|
self.sane_index_shape = sane_index_shape |
|
|
|
def remap_to_used(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape)>1 |
|
inds = inds.reshape(ishape[0],-1) |
|
used = self.used.to(inds) |
|
match = (inds[:,:,None]==used[None,None,...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2)<1 |
|
if self.unknown_index == "random": |
|
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape)>1 |
|
inds = inds.reshape(ishape[0],-1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds>=self.used.shape[0]] = 0 |
|
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, z, temp=None, rescale_logits=False, return_logits=False): |
|
assert temp is None or temp==1.0, "Only for interface compatible with Gumbel" |
|
assert rescale_logits==False, "Only for interface compatible with Gumbel" |
|
assert return_logits==False, "Only for interface compatible with Gumbel" |
|
|
|
z = rearrange(z, 'b c h w -> b h w c').contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight**2, dim=1) - 2 * \ |
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).view(z.shape) |
|
perplexity = None |
|
min_encodings = None |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * torch.mean((z_q.detach()-z)**2) + \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
else: |
|
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() |
|
|
|
if self.remap is not None: |
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[0],-1) |
|
min_encoding_indices = self.remap_to_used(min_encoding_indices) |
|
min_encoding_indices = min_encoding_indices.reshape(-1,1) |
|
|
|
if self.sane_index_shape: |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z_q.shape[0], z_q.shape[2], z_q.shape[3]) |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
if self.remap is not None: |
|
indices = indices.reshape(shape[0],-1) |
|
indices = self.unmap_to_all(indices) |
|
indices = indices.reshape(-1) |
|
|
|
|
|
z_q = self.embedding(indices) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
class EmbeddingEMA(nn.Module): |
|
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5): |
|
super().__init__() |
|
self.decay = decay |
|
self.eps = eps |
|
weight = torch.randn(num_tokens, codebook_dim) |
|
self.weight = nn.Parameter(weight, requires_grad = False) |
|
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad = False) |
|
self.embed_avg = nn.Parameter(weight.clone(), requires_grad = False) |
|
self.update = True |
|
|
|
def forward(self, embed_id): |
|
return F.embedding(embed_id, self.weight) |
|
|
|
def cluster_size_ema_update(self, new_cluster_size): |
|
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay) |
|
|
|
def embed_avg_ema_update(self, new_embed_avg): |
|
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay) |
|
|
|
def weight_update(self, num_tokens): |
|
n = self.cluster_size.sum() |
|
smoothed_cluster_size = ( |
|
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n |
|
) |
|
|
|
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) |
|
self.weight.data.copy_(embed_normalized) |
|
|
|
|
|
class EMAVectorQuantizer(nn.Module): |
|
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5, |
|
remap=None, unknown_index="random"): |
|
super().__init__() |
|
self.codebook_dim = codebook_dim |
|
self.num_tokens = num_tokens |
|
self.beta = beta |
|
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed+1 |
|
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices.") |
|
else: |
|
self.re_embed = n_embed |
|
|
|
def remap_to_used(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape)>1 |
|
inds = inds.reshape(ishape[0],-1) |
|
used = self.used.to(inds) |
|
match = (inds[:,:,None]==used[None,None,...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2)<1 |
|
if self.unknown_index == "random": |
|
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape)>1 |
|
inds = inds.reshape(ishape[0],-1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds>=self.used.shape[0]] = 0 |
|
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, z): |
|
|
|
|
|
z = rearrange(z, 'b c h w -> b h w c') |
|
z_flattened = z.reshape(-1, self.codebook_dim) |
|
|
|
|
|
d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \ |
|
self.embedding.weight.pow(2).sum(dim=1) - 2 * \ |
|
torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) |
|
|
|
|
|
encoding_indices = torch.argmin(d, dim=1) |
|
|
|
z_q = self.embedding(encoding_indices).view(z.shape) |
|
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) |
|
avg_probs = torch.mean(encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
|
|
if self.training and self.embedding.update: |
|
|
|
encodings_sum = encodings.sum(0) |
|
self.embedding.cluster_size_ema_update(encodings_sum) |
|
|
|
embed_sum = encodings.transpose(0,1) @ z_flattened |
|
self.embedding.embed_avg_ema_update(embed_sum) |
|
|
|
self.embedding.weight_update(self.num_tokens) |
|
|
|
|
|
loss = self.beta * F.mse_loss(z_q.detach(), z) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
|
|
z_q = rearrange(z_q, 'b h w c -> b c h w') |
|
return z_q, loss, (perplexity, encodings, encoding_indices) |
|
|