|
import torch |
|
import torch.nn.functional as F |
|
import pytorch_lightning as pl |
|
|
|
from celle_taming_main import instantiate_from_config |
|
|
|
from taming.modules.diffusionmodules.model import Encoder, Decoder |
|
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer |
|
from taming.modules.vqvae.quantize import GumbelQuantize |
|
from taming.modules.vqvae.quantize import EMAVectorQuantizer |
|
|
|
|
|
class VQModel(pl.LightningModule): |
|
def __init__( |
|
self, |
|
ddconfig, |
|
lossconfig, |
|
n_embed, |
|
embed_dim, |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
image_key="image", |
|
colorize_nlabels=None, |
|
monitor=None, |
|
remap=None, |
|
sane_index_shape=False, |
|
): |
|
super().__init__() |
|
self.image_key = image_key |
|
self.encoder = Encoder(**ddconfig) |
|
self.decoder = Decoder(**ddconfig) |
|
self.loss = instantiate_from_config(lossconfig) |
|
self.quantize = VectorQuantizer( |
|
n_embed, |
|
embed_dim, |
|
beta=0.25, |
|
remap=remap, |
|
sane_index_shape=sane_index_shape, |
|
) |
|
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) |
|
self.image_key = image_key |
|
if colorize_nlabels is not None: |
|
assert type(colorize_nlabels) == int |
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) |
|
if monitor is not None: |
|
self.monitor = monitor |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list()): |
|
sd = torch.load(path, map_location="cpu")["state_dict"] |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
print("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
self.load_state_dict(sd, strict=False) |
|
print(f"Restored from {path}") |
|
|
|
def encode(self, x): |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
quant, emb_loss, info = self.quantize(h) |
|
return quant, emb_loss, info |
|
|
|
def decode(self, quant): |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant) |
|
return dec |
|
|
|
def decode_code(self, code_b): |
|
quant_b = self.quantize.embed_code(code_b) |
|
dec = self.decode(quant_b) |
|
return dec |
|
|
|
def forward(self, input): |
|
quant, diff, _ = self.encode(input) |
|
dec = self.decode(quant) |
|
return dec, diff |
|
|
|
def get_input(self, batch, k): |
|
|
|
if k == "mixed": |
|
keys = ["nucleus", "target"] |
|
index = torch.randint(low=0, high=2, size=(1,), dtype=int).item() |
|
k = keys[index] |
|
|
|
x = batch[k] |
|
if len(x.shape) == 3: |
|
x = x[..., None] |
|
|
|
|
|
return x |
|
|
|
def training_step(self, batch, batch_idx=None, optimizer_idx=0): |
|
|
|
if type(batch) == dict: |
|
|
|
x = self.get_input(batch, self.image_key) |
|
|
|
else: |
|
x = batch |
|
|
|
xrec, qloss = self( |
|
x, |
|
) |
|
|
|
if optimizer_idx == 0: |
|
|
|
aeloss, log_dict_ae = self.loss( |
|
qloss, |
|
x, |
|
xrec, |
|
optimizer_idx, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="train", |
|
) |
|
|
|
self.log( |
|
"train/aeloss", |
|
aeloss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
self.log_dict( |
|
log_dict_ae, |
|
prog_bar=False, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
return aeloss |
|
|
|
if optimizer_idx == 1: |
|
|
|
discloss, log_dict_disc = self.loss( |
|
qloss, |
|
x, |
|
xrec, |
|
optimizer_idx, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="train", |
|
) |
|
self.log( |
|
"train/discloss", |
|
discloss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
self.log_dict( |
|
log_dict_disc, |
|
prog_bar=False, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
return discloss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
|
|
if type(batch) == dict: |
|
|
|
x = self.get_input(batch, self.image_key) |
|
|
|
else: |
|
x = batch |
|
|
|
xrec, qloss = self(x) |
|
aeloss, log_dict_ae = self.loss( |
|
qloss, |
|
x, |
|
xrec, |
|
0, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="val", |
|
) |
|
|
|
discloss, log_dict_disc = self.loss( |
|
qloss, |
|
x, |
|
xrec, |
|
1, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="val", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for key, value in log_dict_disc.items(): |
|
if key in log_dict_ae: |
|
log_dict_ae[key].extend(value) |
|
else: |
|
log_dict_ae[key] = value |
|
|
|
self.log_dict(log_dict_ae, sync_dist=True) |
|
return self.log_dict |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
opt_ae = torch.optim.Adam( |
|
list(self.encoder.parameters()) |
|
+ list(self.decoder.parameters()) |
|
+ list(self.quantize.parameters()) |
|
+ list(self.quant_conv.parameters()) |
|
+ list(self.post_quant_conv.parameters()), |
|
lr=lr, |
|
betas=(0.5, 0.9), |
|
) |
|
opt_disc = torch.optim.Adam( |
|
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9) |
|
) |
|
return [opt_ae, opt_disc], [] |
|
|
|
def get_last_layer(self): |
|
return self.decoder.conv_out.weight |
|
|
|
def log_images(self, batch, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.image_key) |
|
x = x.to(self.device) |
|
xrec, _ = self(x) |
|
if x.shape[1] > 3: |
|
|
|
assert xrec.shape[1] > 3 |
|
x = self.to_rgb(x) |
|
xrec = self.to_rgb(xrec) |
|
log["inputs"] = x |
|
log["reconstructions"] = xrec |
|
return log |
|
|
|
def to_rgb(self, x): |
|
assert self.image_key == "segmentation" |
|
if not hasattr(self, "colorize"): |
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) |
|
x = F.conv2d(x, weight=self.colorize) |
|
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 |
|
return x |
|
|
|
|
|
class VQSegmentationModel(VQModel): |
|
def __init__(self, n_labels, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.register_buffer("colorize", torch.randn(3, n_labels, 1, 1)) |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
opt_ae = torch.optim.Adam( |
|
list(self.encoder.parameters()) |
|
+ list(self.decoder.parameters()) |
|
+ list(self.quantize.parameters()) |
|
+ list(self.quant_conv.parameters()) |
|
+ list(self.post_quant_conv.parameters()), |
|
lr=lr, |
|
betas=(0.5, 0.9), |
|
) |
|
return opt_ae |
|
|
|
def training_step(self, batch, batch_idx): |
|
x = self.get_input(batch, self.image_key) |
|
xrec, qloss = self(x) |
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="train") |
|
self.log_dict( |
|
log_dict_ae, |
|
prog_bar=False, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
return aeloss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
x = self.get_input(batch, self.image_key) |
|
xrec, qloss = self(x) |
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="val") |
|
self.log_dict( |
|
log_dict_ae, |
|
prog_bar=False, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
total_loss = log_dict_ae["val/total_loss"] |
|
self.log( |
|
"val/total_loss", |
|
total_loss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
return aeloss |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.image_key) |
|
x = x.to(self.device) |
|
xrec, _ = self(x) |
|
if x.shape[1] > 3: |
|
|
|
assert xrec.shape[1] > 3 |
|
|
|
xrec = torch.argmax(xrec, dim=1, keepdim=True) |
|
xrec = F.one_hot(xrec, num_classes=x.shape[1]) |
|
xrec = xrec.squeeze(1).permute(0, 3, 1, 2).float() |
|
x = self.to_rgb(x) |
|
xrec = self.to_rgb(xrec) |
|
log["inputs"] = x |
|
log["reconstructions"] = xrec |
|
return log |
|
|
|
|
|
class VQNoDiscModel(VQModel): |
|
def __init__( |
|
self, |
|
ddconfig, |
|
lossconfig, |
|
n_embed, |
|
embed_dim, |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
image_key="image", |
|
colorize_nlabels=None, |
|
): |
|
super().__init__( |
|
ddconfig=ddconfig, |
|
lossconfig=lossconfig, |
|
n_embed=n_embed, |
|
embed_dim=embed_dim, |
|
ckpt_path=ckpt_path, |
|
ignore_keys=ignore_keys, |
|
image_key=image_key, |
|
colorize_nlabels=colorize_nlabels, |
|
) |
|
|
|
def training_step(self, batch, batch_idx): |
|
x = self.get_input(batch, self.image_key) |
|
xrec, qloss = self(x) |
|
|
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="train") |
|
output = pl.TrainResult(minimize=aeloss) |
|
output.log( |
|
"train/aeloss", |
|
aeloss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
) |
|
output.log_dict( |
|
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True |
|
) |
|
return output |
|
|
|
def validation_step(self, batch, batch_idx): |
|
x = self.get_input(batch, self.image_key) |
|
xrec, qloss = self(x) |
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="val") |
|
rec_loss = log_dict_ae["val/rec_loss"] |
|
output = pl.EvalResult(checkpoint_on=rec_loss) |
|
output.log( |
|
"val/rec_loss", |
|
rec_loss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
) |
|
output.log( |
|
"val/aeloss", |
|
aeloss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
) |
|
output.log_dict(log_dict_ae) |
|
|
|
return output |
|
|
|
def configure_optimizers(self): |
|
optimizer = torch.optim.Adam( |
|
list(self.encoder.parameters()) |
|
+ list(self.decoder.parameters()) |
|
+ list(self.quantize.parameters()) |
|
+ list(self.quant_conv.parameters()) |
|
+ list(self.post_quant_conv.parameters()), |
|
lr=self.learning_rate, |
|
betas=(0.5, 0.9), |
|
) |
|
return optimizer |
|
|
|
|
|
class GumbelVQ(VQModel): |
|
def __init__( |
|
self, |
|
ddconfig, |
|
lossconfig, |
|
n_embed, |
|
embed_dim, |
|
temperature_scheduler_config, |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
image_key="image", |
|
colorize_nlabels=None, |
|
monitor=None, |
|
kl_weight=1e-8, |
|
remap=None, |
|
): |
|
|
|
z_channels = ddconfig["z_channels"] |
|
super().__init__( |
|
ddconfig, |
|
lossconfig, |
|
n_embed, |
|
embed_dim, |
|
ckpt_path=None, |
|
ignore_keys=ignore_keys, |
|
image_key=image_key, |
|
colorize_nlabels=colorize_nlabels, |
|
monitor=monitor, |
|
) |
|
|
|
self.loss.n_classes = n_embed |
|
self.vocab_size = n_embed |
|
|
|
self.quantize = GumbelQuantize( |
|
z_channels, |
|
embed_dim, |
|
n_embed=n_embed, |
|
kl_weight=kl_weight, |
|
temp_init=1.0, |
|
remap=remap, |
|
) |
|
|
|
self.temperature_scheduler = instantiate_from_config( |
|
temperature_scheduler_config |
|
) |
|
|
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) |
|
|
|
def temperature_scheduling(self): |
|
self.quantize.temperature = self.temperature_scheduler(self.global_step) |
|
|
|
def encode_to_prequant(self, x): |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
return h |
|
|
|
def decode_code(self, code_b): |
|
raise NotImplementedError |
|
|
|
def training_step(self, batch, batch_idx=None, optimizer_idx=0): |
|
self.temperature_scheduling() |
|
x = self.get_input(batch, self.image_key) |
|
xrec, qloss = self(x) |
|
|
|
if optimizer_idx == 0: |
|
|
|
aeloss, log_dict_ae = self.loss( |
|
qloss, |
|
x, |
|
xrec, |
|
optimizer_idx, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="train", |
|
) |
|
|
|
self.log_dict( |
|
log_dict_ae, |
|
prog_bar=False, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
self.log( |
|
"temperature", |
|
self.quantize.temperature, |
|
prog_bar=False, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
return aeloss |
|
|
|
if optimizer_idx == 1: |
|
|
|
discloss, log_dict_disc = self.loss( |
|
qloss, |
|
x, |
|
xrec, |
|
optimizer_idx, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="train", |
|
) |
|
self.log_dict( |
|
log_dict_disc, |
|
prog_bar=False, |
|
logger=True, |
|
on_step=True, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
return discloss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
x = self.get_input(batch, self.image_key) |
|
xrec, qloss = self(x) |
|
aeloss, log_dict_ae = self.loss( |
|
qloss, |
|
x, |
|
xrec, |
|
0, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="val", |
|
) |
|
|
|
discloss, log_dict_disc = self.loss( |
|
qloss, |
|
x, |
|
xrec, |
|
1, |
|
self.global_step, |
|
last_layer=self.get_last_layer(), |
|
split="val", |
|
) |
|
rec_loss = log_dict_ae["val/rec_loss"] |
|
self.log( |
|
"val/rec_loss", |
|
rec_loss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=False, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
self.log( |
|
"val/aeloss", |
|
aeloss, |
|
prog_bar=True, |
|
logger=True, |
|
on_step=False, |
|
on_epoch=True, |
|
sync_dist=True, |
|
) |
|
self.log_dict(log_dict_ae, sync_dist=True) |
|
self.log_dict(log_dict_disc, sync_dist=True) |
|
return self.log_dict |
|
|
|
def log_images(self, batch, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.image_key) |
|
x = x.to(self.device) |
|
|
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
quant, _, _ = self.quantize(h) |
|
|
|
x_rec = self.decode(quant) |
|
log["inputs"] = x |
|
log["reconstructions"] = x_rec |
|
return log |
|
|
|
|
|
class EMAVQ(VQModel): |
|
def __init__( |
|
self, |
|
ddconfig, |
|
lossconfig, |
|
n_embed, |
|
embed_dim, |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
image_key="image", |
|
colorize_nlabels=None, |
|
monitor=None, |
|
remap=None, |
|
sane_index_shape=False, |
|
): |
|
super().__init__( |
|
ddconfig, |
|
lossconfig, |
|
n_embed, |
|
embed_dim, |
|
ckpt_path=None, |
|
ignore_keys=ignore_keys, |
|
image_key=image_key, |
|
colorize_nlabels=colorize_nlabels, |
|
monitor=monitor, |
|
) |
|
self.quantize = EMAVectorQuantizer( |
|
n_embed=n_embed, embedding_dim=embed_dim, beta=0.25, remap=remap |
|
) |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
|
|
opt_ae = torch.optim.Adam( |
|
list(self.encoder.parameters()) |
|
+ list(self.decoder.parameters()) |
|
+ list(self.quant_conv.parameters()) |
|
+ list(self.post_quant_conv.parameters()), |
|
lr=lr, |
|
betas=(0.5, 0.9), |
|
) |
|
opt_disc = torch.optim.Adam( |
|
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9) |
|
) |
|
return [opt_ae, opt_disc], [] |
|
|