CELL-E_2-Image_Prediction / prediction.py
EmaadKhwaja
enable queue
fbe05c1
raw
history blame
2.08 kB
import os
os.chdir('..')
from dataloader import CellLoader
from celle_main import instantiate_from_config
from omegaconf import OmegaConf
def run_image_prediction(
sequence_input,
nucleus_image,
model_ckpt_path,
model_config_path,
device
):
"""
Run Celle model with provided inputs and display results.
:param sequence: Path to sequence file
:param nucleus_image_path: Path to nucleus image
:param protein_image_path: Path to protein image (optional)
:param model_ckpt_path: Path to model checkpoint
:param model_config_path: Path to model config
"""
# Instantiate dataset object
dataset = CellLoader(
sequence_mode="embedding",
vocab="esm2",
split_key="val",
crop_method="center",
resize=600,
crop_size=256,
text_seq_len=1000,
pad_mode="end",
threshold="median",
)
# Convert SEQUENCE to sequence using dataset.tokenize_sequence()
sequence = dataset.tokenize_sequence(sequence_input)
# Load model config and set ckpt_path if not provided in config
config = OmegaConf.load(model_config_path)
if config["model"]["params"]["ckpt_path"] is None:
config["model"]["params"]["ckpt_path"] = model_ckpt_path
# Set condition_model_path and vqgan_model_path to None
config["model"]["params"]["condition_model_path"] = None
config["model"]["params"]["vqgan_model_path"] = None
# Instantiate model from config and move to device
model = instantiate_from_config(config).to(device)
# Sample from model using provided sequence and nucleus image
_, _, _, predicted_threshold, predicted_heatmap = model.celle.sample(
text=sequence,
condition=nucleus_image,
timesteps=1,
temperature=1,
progress=True,
)
# Move predicted_threshold and predicted_heatmap to CPU and select first element of batch
predicted_threshold = predicted_threshold.cpu()[0, 0]
predicted_heatmap = predicted_heatmap.cpu()[0, 0]
return predicted_threshold, predicted_heatmap