|
""" |
|
taken from: https://github.com/karpathy/minGPT/ |
|
GPT model: |
|
- the initial stem consists of a combination of token encoding and a positional encoding |
|
- the meat of it is a uniform sequence of Transformer blocks |
|
- each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block |
|
- all blocks feed into a central residual pathway similar to resnets |
|
- the final decoder is a linear projection into a vanilla Softmax classifier |
|
""" |
|
|
|
import math |
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from transformers import top_k_top_p_filtering |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class GPTConfig: |
|
""" base GPT config, params common to all GPT versions """ |
|
embd_pdrop = 0.1 |
|
resid_pdrop = 0.1 |
|
attn_pdrop = 0.1 |
|
|
|
def __init__(self, vocab_size, block_size, **kwargs): |
|
self.vocab_size = vocab_size |
|
self.block_size = block_size |
|
for k,v in kwargs.items(): |
|
setattr(self, k, v) |
|
|
|
|
|
class GPT1Config(GPTConfig): |
|
""" GPT-1 like network roughly 125M params """ |
|
n_layer = 12 |
|
n_head = 12 |
|
n_embd = 768 |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
""" |
|
A vanilla multi-head masked self-attention layer with a projection at the end. |
|
It is possible to use torch.nn.MultiheadAttention here but I am including an |
|
explicit implementation here to show that there is nothing too scary here. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.key = nn.Linear(config.n_embd, config.n_embd) |
|
self.query = nn.Linear(config.n_embd, config.n_embd) |
|
self.value = nn.Linear(config.n_embd, config.n_embd) |
|
|
|
self.attn_drop = nn.Dropout(config.attn_pdrop) |
|
self.resid_drop = nn.Dropout(config.resid_pdrop) |
|
|
|
self.proj = nn.Linear(config.n_embd, config.n_embd) |
|
|
|
mask = torch.tril(torch.ones(config.block_size, |
|
config.block_size)) |
|
if hasattr(config, "n_unmasked"): |
|
mask[:config.n_unmasked, :config.n_unmasked] = 1 |
|
self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size)) |
|
self.n_head = config.n_head |
|
|
|
def forward(self, x, layer_past=None): |
|
B, T, C = x.size() |
|
|
|
|
|
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
present = torch.stack((k, v)) |
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
k = torch.cat((past_key, k), dim=-2) |
|
v = torch.cat((past_value, v), dim=-2) |
|
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
if layer_past is None: |
|
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) |
|
|
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_drop(att) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
y = self.resid_drop(self.proj(y)) |
|
return y, present |
|
|
|
|
|
class Block(nn.Module): |
|
""" an unassuming Transformer block """ |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln1 = nn.LayerNorm(config.n_embd) |
|
self.ln2 = nn.LayerNorm(config.n_embd) |
|
self.attn = CausalSelfAttention(config) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(config.n_embd, 4 * config.n_embd), |
|
nn.GELU(), |
|
nn.Linear(4 * config.n_embd, config.n_embd), |
|
nn.Dropout(config.resid_pdrop), |
|
) |
|
|
|
def forward(self, x, layer_past=None, return_present=False): |
|
|
|
if return_present: assert not self.training |
|
|
|
attn, present = self.attn(self.ln1(x), layer_past=layer_past) |
|
|
|
x = x + attn |
|
x = x + self.mlp(self.ln2(x)) |
|
if layer_past is not None or return_present: |
|
return x, present |
|
return x |
|
|
|
|
|
class GPT(nn.Module): |
|
""" the full GPT language model, with a context size of block_size """ |
|
def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256, |
|
embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): |
|
super().__init__() |
|
config = GPTConfig(vocab_size=vocab_size, block_size=block_size, |
|
embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, |
|
n_layer=n_layer, n_head=n_head, n_embd=n_embd, |
|
n_unmasked=n_unmasked) |
|
|
|
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) |
|
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) |
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
|
|
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) |
|
|
|
self.ln_f = nn.LayerNorm(config.n_embd) |
|
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.block_size = config.block_size |
|
self.apply(self._init_weights) |
|
self.config = config |
|
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) |
|
|
|
def get_block_size(self): |
|
return self.block_size |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def forward(self, idx, embeddings=None, targets=None): |
|
|
|
token_embeddings = self.tok_emb(idx) |
|
|
|
if embeddings is not None: |
|
token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) |
|
|
|
t = token_embeddings.shape[1] |
|
assert t <= self.block_size, "Cannot forward, model block size is exhausted." |
|
position_embeddings = self.pos_emb[:, :t, :] |
|
x = self.drop(token_embeddings + position_embeddings) |
|
x = self.blocks(x) |
|
x = self.ln_f(x) |
|
logits = self.head(x) |
|
|
|
|
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
|
|
return logits, loss |
|
|
|
def forward_with_past(self, idx, embeddings=None, targets=None, past=None, past_length=None): |
|
|
|
assert not self.training |
|
token_embeddings = self.tok_emb(idx) |
|
if embeddings is not None: |
|
token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) |
|
|
|
if past is not None: |
|
assert past_length is not None |
|
past = torch.cat(past, dim=-2) |
|
past_shape = list(past.shape) |
|
expected_shape = [self.config.n_layer, 2, idx.shape[0], self.config.n_head, past_length, self.config.n_embd//self.config.n_head] |
|
assert past_shape == expected_shape, f"{past_shape} =/= {expected_shape}" |
|
position_embeddings = self.pos_emb[:, past_length, :] |
|
else: |
|
position_embeddings = self.pos_emb[:, :token_embeddings.shape[1], :] |
|
|
|
x = self.drop(token_embeddings + position_embeddings) |
|
presents = [] |
|
for i, block in enumerate(self.blocks): |
|
x, present = block(x, layer_past=past[i, ...] if past is not None else None, return_present=True) |
|
presents.append(present) |
|
|
|
x = self.ln_f(x) |
|
logits = self.head(x) |
|
|
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
|
|
return logits, loss, torch.stack(presents) |
|
|
|
|
|
class DummyGPT(nn.Module): |
|
|
|
def __init__(self, add_value=1): |
|
super().__init__() |
|
self.add_value = add_value |
|
|
|
def forward(self, idx): |
|
return idx + self.add_value, None |
|
|
|
|
|
class CodeGPT(nn.Module): |
|
"""Takes in semi-embeddings""" |
|
def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256, |
|
embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): |
|
super().__init__() |
|
config = GPTConfig(vocab_size=vocab_size, block_size=block_size, |
|
embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, |
|
n_layer=n_layer, n_head=n_head, n_embd=n_embd, |
|
n_unmasked=n_unmasked) |
|
|
|
self.tok_emb = nn.Linear(in_channels, config.n_embd) |
|
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) |
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
|
|
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) |
|
|
|
self.ln_f = nn.LayerNorm(config.n_embd) |
|
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.block_size = config.block_size |
|
self.apply(self._init_weights) |
|
self.config = config |
|
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) |
|
|
|
def get_block_size(self): |
|
return self.block_size |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def forward(self, idx, embeddings=None, targets=None): |
|
|
|
token_embeddings = self.tok_emb(idx) |
|
|
|
if embeddings is not None: |
|
token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) |
|
|
|
t = token_embeddings.shape[1] |
|
assert t <= self.block_size, "Cannot forward, model block size is exhausted." |
|
position_embeddings = self.pos_emb[:, :t, :] |
|
x = self.drop(token_embeddings + position_embeddings) |
|
x = self.blocks(x) |
|
x = self.taming_cinln_f(x) |
|
logits = self.head(x) |
|
|
|
|
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
|
|
return logits, loss |
|
|
|
|
|
|
|
|
|
|
|
def top_k_logits(logits, k): |
|
v, ix = torch.topk(logits, k) |
|
out = logits.clone() |
|
out[out < v[:, [-1]]] = -float('Inf') |
|
return out |
|
|
|
@torch.no_grad() |
|
def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): |
|
""" |
|
take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in |
|
the sequence, feeding the predictions back into the model each time. Clearly the sampling |
|
has quadratic complexity unlike an RNN that is only linear, and has a finite context window |
|
of block_size, unlike an RNN that has an infinite context window. |
|
""" |
|
block_size = model.get_block_size() |
|
model.eval() |
|
for k in range(steps): |
|
x_cond = x if x.size(1) <= block_size else x[:, -block_size:] |
|
logits, _ = model(x_cond) |
|
|
|
logits = logits[:, -1, :] / temperature |
|
|
|
if top_k is not None: |
|
logits = top_k_logits(logits, top_k) |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
if sample: |
|
ix = torch.multinomial(probs, num_samples=1) |
|
else: |
|
_, ix = torch.topk(probs, k=1, dim=-1) |
|
|
|
x = torch.cat((x, ix), dim=1) |
|
|
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
def sample_with_past(x, model, steps, temperature=1., sample_logits=True, |
|
top_k=None, top_p=None, callback=None): |
|
|
|
sample = x |
|
cond_len = x.shape[1] |
|
past = None |
|
for n in range(steps): |
|
if callback is not None: |
|
callback(n) |
|
logits, _, present = model.forward_with_past(x, past=past, past_length=(n+cond_len-1)) |
|
if past is None: |
|
past = [present] |
|
else: |
|
past.append(present) |
|
logits = logits[:, -1, :] / temperature |
|
if top_k is not None: |
|
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
if not sample_logits: |
|
_, x = torch.topk(probs, k=1, dim=-1) |
|
else: |
|
x = torch.multinomial(probs, num_samples=1) |
|
|
|
sample = torch.cat((sample, x), dim=1) |
|
del past |
|
sample = sample[:, cond_len:] |
|
return sample |
|
|
|
|
|
|
|
|
|
class KMeans(nn.Module): |
|
def __init__(self, ncluster=512, nc=3, niter=10): |
|
super().__init__() |
|
self.ncluster = ncluster |
|
self.nc = nc |
|
self.niter = niter |
|
self.shape = (3,32,32) |
|
self.register_buffer("C", torch.zeros(self.ncluster,nc)) |
|
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) |
|
|
|
def is_initialized(self): |
|
return self.initialized.item() == 1 |
|
|
|
@torch.no_grad() |
|
def initialize(self, x): |
|
N, D = x.shape |
|
assert D == self.nc, D |
|
c = x[torch.randperm(N)[:self.ncluster]] |
|
for i in range(self.niter): |
|
|
|
a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1) |
|
|
|
c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)]) |
|
|
|
nanix = torch.any(torch.isnan(c), dim=1) |
|
ndead = nanix.sum().item() |
|
print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead)) |
|
c[nanix] = x[torch.randperm(N)[:ndead]] |
|
|
|
self.C.copy_(c) |
|
self.initialized.fill_(1) |
|
|
|
|
|
def forward(self, x, reverse=False, shape=None): |
|
if not reverse: |
|
|
|
bs,c,h,w = x.shape |
|
assert c == self.nc |
|
x = x.reshape(bs,c,h*w,1) |
|
C = self.C.permute(1,0) |
|
C = C.reshape(1,c,1,self.ncluster) |
|
a = ((x-C)**2).sum(1).argmin(-1) |
|
return a |
|
else: |
|
|
|
bs, HW = x.shape |
|
""" |
|
c = self.C.reshape( 1, self.nc, 1, self.ncluster) |
|
c = c[bs*[0],:,:,:] |
|
c = c[:,:,HW*[0],:] |
|
x = x.reshape(bs, 1, HW, 1) |
|
x = x[:,3*[0],:,:] |
|
x = torch.gather(c, dim=3, index=x) |
|
""" |
|
x = self.C[x] |
|
x = x.permute(0,2,1) |
|
shape = shape if shape is not None else self.shape |
|
x = x.reshape(bs, *shape) |
|
|
|
return x |
|
|