EmaadKhwaja
file upload
5d2263b
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from rotary_embedding_torch import apply_rotary_emb
from celle.utils import exists, default, max_neg_value
# helpers
def stable_softmax(t, dim=-1, alpha=32**2):
t = t / alpha
t = t - torch.amax(t, dim=dim, keepdim=True).detach()
return (t * alpha).softmax(dim=dim)
def apply_pos_emb(pos_emb, qkv):
n = qkv[0].shape[-2]
pos_emb = pos_emb[..., :n, :]
return tuple(map(lambda t: apply_rotary_emb(pos_emb, t), qkv))
# classes
class Attention(nn.Module):
def __init__(
self,
dim,
seq_len,
causal=False,
heads=8,
dim_head=64,
dropout=0.0,
stable=False,
static_mask=None,
):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.seq_len = seq_len
self.scale = dim_head**-0.5
self.stable = stable
self.causal = causal
self.register_buffer("static_mask", static_mask, persistent=False)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
self.save_attn = nn.Identity()
def forward(self, x, context_mask=None, rotary_pos_emb=None):
# x: [batch_size, seq_len, dim]
b, n, _, h = *x.shape, self.heads
device = x.device
softmax = torch.softmax if not self.stable else stable_softmax
# qkv: 3 tensors of shape [batch_size, seq_len, inner_dim]
qkv = self.to_qkv(x).chunk(3, dim=-1)
# q,k,v: [batch_size, heads, seq_len, dim_head]
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), qkv)
if exists(rotary_pos_emb):
q, k, v = apply_pos_emb(rotary_pos_emb[..., :, :], (q, k, v))
q *= self.scale
# dots: [batch_size, heads, seq_len_i ,seq_len_j]
dots = torch.einsum("b h i d, b h j d -> b h i j", q, k)
mask_value = max_neg_value(dots)
if exists(context_mask):
# context_mask: [batch_size ,1 ,1 ,seq_len_j]
context_mask = rearrange(context_mask, "b j -> b 1 1 j")
context_mask = F.pad(context_mask, (1, 0), value=True)
mask_value = -torch.finfo(dots.dtype).max
dots = dots.masked_fill(~context_mask, mask_value)
if self.causal:
i, j = dots.shape[-2:]
context_mask = torch.ones(i, j, device=device).triu_(j - i + 1).bool()
dots.masked_fill_(context_mask, mask_value)
if exists(self.static_mask):
dots.masked_fill_(~self.static_mask[:n, :n], mask_value)
# attn: [batch_size ,heads ,seq_len_i ,seq_len_j]
attn = softmax(dots, dim=-1)
attn = self.save_attn(attn)
# out: [batch_size ,heads ,seq_len_i ,dim_head]
out = torch.einsum("b h n j, b h j d -> b h n d", attn, v)
# out: [batch_size ,seq_len_i ,(heads*dim_head)]
out = rearrange(out, "b h n d -> b n (h d)")
# out: [batch_size ,seq_len_i ,dim]
out = self.to_out(out)
return out
# sparse attention with convolutional pattern, as mentioned in the blog post. customizable kernel size and dilation
class SparseConvCausalAttention(nn.Module):
def __init__(
self,
dim,
seq_len,
image_size=32,
kernel_size=5,
dilation=1,
heads=8,
dim_head=64,
dropout=0.0,
stable=False,
**kwargs,
):
super().__init__()
assert kernel_size % 2 == 1, "kernel size must be odd"
inner_dim = dim_head * heads
self.seq_len = seq_len
self.heads = heads
self.scale = dim_head**-0.5
self.image_size = image_size
self.kernel_size = kernel_size
self.dilation = dilation
self.stable = stable
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
def forward(self, x, mask=None, rotary_pos_emb=None):
b, n, _, h, img_size, kernel_size, dilation, seq_len, device = (
*x.shape,
self.heads,
self.image_size,
self.kernel_size,
self.dilation,
self.seq_len,
x.device,
)
softmax = torch.softmax if not self.stable else stable_softmax
img_seq_len = img_size**2
text_len = seq_len + 1 - img_seq_len
# padding
padding = seq_len - n + 1
mask = default(mask, lambda: torch.ones(b, text_len, device=device).bool())
x = F.pad(x, (0, 0, 0, padding), value=0)
mask = mask[:, :text_len]
# derive query / keys / values
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), qkv)
if exists(rotary_pos_emb):
q, k, v = apply_pos_emb(rotary_pos_emb, (q, k, v))
q *= self.scale
((q_text, q_img), (k_text, k_img), (v_text, v_img)) = map(
lambda t: (t[:, :-img_seq_len], t[:, -img_seq_len:]), (q, k, v)
)
# text attention
dots_text = einsum("b i d, b j d -> b i j", q_text, k_text)
mask_value = max_neg_value(dots_text)
i, j = dots_text.shape[-2:]
text_causal_mask = torch.ones(i, j, device=device).triu_(j - i + 1).bool()
dots_text.masked_fill_(text_causal_mask, mask_value)
attn_text = softmax(dots_text, dim=-1)
out_text = einsum("b i j, b j d -> b i d", attn_text, v_text)
# image attention
effective_kernel_size = (kernel_size - 1) * dilation + 1
padding = effective_kernel_size // 2
k_img, v_img = map(
lambda t: rearrange(t, "b (h w) c -> b c h w", h=img_size), (k_img, v_img)
)
k_img, v_img = map(
lambda t: F.unfold(t, kernel_size, padding=padding, dilation=dilation),
(k_img, v_img),
)
k_img, v_img = map(
lambda t: rearrange(t, "b (d j) i -> b i j d", j=kernel_size**2),
(k_img, v_img),
)
# let image attend to all of text
dots_image = einsum("b i d, b i j d -> b i j", q_img, k_img)
dots_image_to_text = einsum("b i d, b j d -> b i j", q_img, k_text)
# calculate causal attention for local convolution
i, j = dots_image.shape[-2:]
img_seq = torch.arange(img_seq_len, device=device)
k_img_indices = rearrange(img_seq.float(), "(h w) -> () () h w", h=img_size)
k_img_indices = F.pad(
k_img_indices, (padding,) * 4, value=img_seq_len
) # padding set to be max, so it is never attended to
k_img_indices = F.unfold(k_img_indices, kernel_size, dilation=dilation)
k_img_indices = rearrange(k_img_indices, "b j i -> b i j")
# mask image attention
q_img_indices = rearrange(img_seq, "i -> () i ()")
causal_mask = q_img_indices < k_img_indices
# concat text mask with image causal mask
causal_mask = repeat(causal_mask, "() i j -> b i j", b=b * h)
mask = repeat(mask, "b j -> (b h) i j", i=i, h=h)
mask = torch.cat((~mask, causal_mask), dim=-1)
# image can attend to all of text
dots = torch.cat((dots_image_to_text, dots_image), dim=-1)
dots.masked_fill_(mask, mask_value)
attn = softmax(dots, dim=-1)
# aggregate
attn_image_to_text, attn_image = attn[..., :text_len], attn[..., text_len:]
out_image_to_image = einsum("b i j, b i j d -> b i d", attn_image, v_img)
out_image_to_text = einsum("b i j, b j d -> b i d", attn_image_to_text, v_text)
out_image = out_image_to_image + out_image_to_text
# combine attended values for both text and image
out = torch.cat((out_text, out_image), dim=1)
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
out = self.to_out(out)
return out[:, :n]